7))
)
O
C
©
3
<
=
<

Beyond the spectral theorem: Spectrally
decomposing arbitrary functions of
nondiagonalizable operators

Cite as: AIP Advances 8, 065305 (2018); https://doi.org/10.1063/1.5040705
Submitted: 06 August 2016 . Accepted: 23 May 2018 . Published Online: 06 June 2018

Paul M. Riechers, and James P. Crutchfield iC

COLLECTIONS

Paper published as part of the special topic on Chemical Physics, Energy, Fluids and Plasmas, Materials Science

and Mathematical Physics
N ()
A |

Qo S 8

View Online Export Citation CrossMark

an N

ARTICLES YOU MAY BE INTERESTED IN

Spectral simplicity of apparent complexity. I. The nondiagonalizable metadynamics of
prediction

Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 033115 (2018); https://
doi.org/10.1063/1.4985199

Spectral simplicity of apparent complexity. Il. Exact complexities and complexity spectra

Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 033116 (2018); https://
doi.org/10.1063/1.4986248

Completely positive dynamical semigroups of N-level systems
Journal of Mathematical Physics 17, 821 (1976); https://doi.org/10.1063/1.522979

AIP Advances

Fluids and Plasmas Collection

AIP Advances 8, 065305 (2018); https://doi.org/10.1063/1.5040705 8, 065305

© 2018 Author(s).


https://images.scitation.org/redirect.spark?MID=176720&plid=1296190&setID=389593&channelID=0&CID=444925&banID=520069418&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=acfed7b3e87e10eb36cbacde963da6c3598fb2a5&location=
https://doi.org/10.1063/1.5040705
https://doi.org/10.1063/1.5040705
https://aip.scitation.org/author/Riechers%2C+Paul+M
https://aip.scitation.org/author/Crutchfield%2C+James+P
http://orcid.org/0000-0003-4466-5410
/topic/special-collections/cp2019?SeriesKey=adv
/topic/special-collections/eng2019?SeriesKey=adv
/topic/special-collections/fp2019?SeriesKey=adv
/topic/special-collections/ms2019?SeriesKey=adv
/topic/special-collections/mp2019?SeriesKey=adv
https://doi.org/10.1063/1.5040705
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5040705
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5040705&domain=aip.scitation.org&date_stamp=2018-06-06
https://aip.scitation.org/doi/10.1063/1.4985199
https://aip.scitation.org/doi/10.1063/1.4985199
https://doi.org/10.1063/1.4985199
https://doi.org/10.1063/1.4985199
https://aip.scitation.org/doi/10.1063/1.4986248
https://doi.org/10.1063/1.4986248
https://doi.org/10.1063/1.4986248
https://aip.scitation.org/doi/10.1063/1.522979
https://doi.org/10.1063/1.522979

AIP ADVANCES 8, 065305 (2018)

Beyond the spectral theorem: Spectrally decomposing
arbitrary functions of nondiagonalizable operators

Paul M. Riechers? and James P. Crutchfield®
Complexity Sciences Center, Department of Physics, University of California at Davis,
One Shields Avenue, Davis, CA 95616, USA

(Received 6 August 2016; accepted 23 May 2018; published online 6 June 2018)

Nonlinearities in finite dimensions can be linearized by projecting them into infinite
dimensions. Unfortunately, the familiar linear operator techniques that one would
then hope to use often fail since the operators cannot be diagonalized. The curse
of nondiagonalizability also plays an important role even in finite-dimensional lin-
ear operators, leading to analytical impediments that occur across many scientific
domains. We show how to circumvent it via two tracks. First, using the well-known
holomorphic functional calculus, we develop new practical results about spectral pro-
jection operators and the relationship between left and right generalized eigenvectors.
Second, we generalize the holomorphic calculus to a meromorphic functional calcu-
lus that can decompose arbitrary functions of nondiagonalizable linear operators in
terms of their eigenvalues and projection operators. This simultaneously simplifies
and generalizes functional calculus so that it is readily applicable to analyzing com-
plex physical systems. Together, these results extend the spectral theorem of normal
operators to a much wider class, including circumstances in which poles and zeros
of the function coincide with the operator spectrum. By allowing the direct manipu-
lation of individual eigenspaces of nonnormal and nondiagonalizable operators, the
new theory avoids spurious divergences. As such, it yields novel insights and closed-
form expressions across several areas of physics in which nondiagonalizable dynamics
arise, including memoryful stochastic processes, open nonunitary quantum systems,
and far-from-equilibrium thermodynamics. The technical contributions include the
first full treatment of arbitrary powers of an operator, highlighting the special role of
the zero eigenvalue. Furthermore, we show that the Drazin inverse, previously only
defined axiomatically, can be derived as the negative-one power of singular operators
within the meromorphic functional calculus and we give a new general method to
construct it. We provide new formulae for constructing spectral projection operators
and delineate the relations among projection operators, eigenvectors, and left and right
generalized eigenvectors. By way of illustrating its application, we explore several,
rather distinct examples. First, we analyze stochastic transition operators in discrete
and continuous time. Second, we show that nondiagonalizability can be a robust fea-
ture of a stochastic process, induced even by simple counting. As a result, we directly
derive distributions of the time-dependent Poisson process and point out that nondi-
agonalizability is intrinsic to it and the broad class of hidden semi-Markov processes.
Third, we show that the Drazin inverse arises naturally in stochastic thermodynamics
and that applying the meromorphic functional calculus provides closed-form solutions
for the dynamics of key thermodynamic observables. Finally, we draw connections
to the Ruelle-Frobenius—Perron and Koopman operators for chaotic dynamical sys-
tems and propose how to extract eigenvalues from a time-series. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
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... the supreme goal of all theory is to make the irreducible basic elements as simple and as few as
possible without having to surrender the adequate representation of a single datum of experience.
A. Einstein [Ref. 1, p. 165]

I. INTRODUCTION

Decomposing a complicated system into its constituent parts—reductionism—is one of science’s
most powerful strategies for analysis and understanding. Large-scale systems with linearly coupled
components give one paradigm of this success. Each can be decomposed into an equivalent system
of independent elements using a similarity transformation calculated from the linear algebra of the
system’s eigenvalues and eigenvectors. The physics of linear wave phenomena, whether of classical
light or quantum mechanical amplitudes, sets the standard of complete reduction rather high. The
dynamics is captured by an “operator”” whose allowed or exhibited “modes” are the elementary behav-
iors out of which composite behaviors are constructed by simply weighting each mode’s contribution
and adding them up.

However, one should not reduce a composite system more than is necessary nor, as is increasingly
appreciated these days, more than one, in fact, can. Indeed, we live in a complex, nonlinear world
whose constituents are strongly interacting. Often their key structures and memoryful behaviors
emerge only over space and time. These are the complex systems. Yet, perhaps surprisingly, many
complex systems with nonlinear dynamics correspond to linear operators in abstract high-dimensional
spaces.” And so, there is a sense in which even these complex systems can be reduced to the study
of independent nonlocal collective modes.

Reductionism, however, faces its own challenges even within its paradigmatic setting of lin-
ear systems: linear operators may have interdependent modes with irreducibly entwined behaviors.
These irreducible components correspond to so-called nondiagonalizable subspaces. No similarity
transformation can reduce them.

In this view, reductionism can only ever be a guide. The actual goal is to achieve a happy medium,
as Einstein reminds us, of decomposing a system only to that level at which the parts are irreducible.
To proceed, though, begs the original question, What happens when reductionism fails? To answer this
requires revisiting one of its more successful implementations, spectral decomposition of completely
reducible operators.

A. Spectral decomposition

Spectral decomposition—splitting a linear operator into independent modes of simple behavior—
has greatly accelerated progress in the physical sciences. The impact stems from the fact that spectral
decomposition is not only a powerful mathematical tool for expressing the organization of large-
scale systems, but also yields predictive theories with directly observable physical consequences.’
Quantum mechanics and statistical mechanics identify the energy eigenvalues of Hamiltonians as
the basic objects in thermodynamics: transitions among the energy eigenstates yield heat and work.
The eigenvalue spectrum reveals itself most directly in other kinds of spectra, such as the frequency
spectra of light emitted by the gases that permeate the galactic filaments of our universe.® Quantized
transitions, an initially mystifying feature of atomic-scale systems, correspond to distinct eigenvec-
tors and discrete spacing between eigenvalues. The corresponding theory of spectral decomposition
established the quantitative foundation of quantum mechanics.

The applications and discoveries enabled by spectral decomposition and the corresponding spec-
tral theory fill a long list. In application, direct-bandgap semiconducting materials can be turned into
light-emitting diodes (LEDs) or lasers by engineering the spatially-inhomogeneous distribution of
energy eigenvalues and the occupation of their corresponding states.” Before their experimental dis-
covery, anti-particles were anticipated as the nonoccupancy of negative-energy eigenstates of the
Dirac Hamiltonian.®
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The spectral theory, though, extends far beyond physical science disciplines. In large measure,
this arises since the evolution of any object corresponds to a linear dynamic in a sufficiently high-
dimensional state space. Even nominally nonlinear dynamics over several variables, the canonical
mechanism of deterministic chaos, appear as linear dynamics in appropriate infinite-dimensional shift-
spaces.* A nondynamic version of rendering nonlinearities into linearities in a higher-dimensional
feature space is exploited with much success today in machine learning by support vector machines,
for example Ref. 9. Spectral decomposition often allows a problem to be simplified by approximations
that use only the dominant contributing modes. Indeed, human-face recognition can be efficiently
accomplished using a small basis of “eigenfaces”.!”

Certainly, there are many applications that highlight the importance of decomposition and the
spectral theory of operators. However, a brief reflection on the mathematical history will give better
context to its precise results, associated assumptions, and, more to the point, the generalizations we
develop here in hopes of advancing the analysis and understanding of complex systems.

Following on early developments of operator theory by Hilbert and co-workers,!! the spectral
theorem for normal operators reached maturity under von Neumann by the early 1930s.'%!3 It became
the mathematical backbone of much progress in physics since then, from classical partial differential
equations to quantum physics. Normal operators, by definition, commute with their Hermitian con-
jugate: ATA = AAT. Examples include symmetric and orthogonal matrices in classical mechanics and
Hermitian, skew-Hermitian, and unitary operators in quantum mechanics.

The spectral theorem itself is often identified as a collection of related results about normal oper-
ators; see, e.g., Ref. 14. In the case of finite-dimensional vector spaces,15 the spectral theorem asserts
that normal operators are diagonalizable and can always be diagonalized by a unitary transformation;
that left and right eigenvectors (or eigenfunctions) are simply related by complex-conjugate trans-
pose; that these eigenvectors form a complete basis; and that functions of a normal operator reduce
to the action of the function on each eigenvalue. Most of these qualities survive with only moderate
provisos in the infinite-dimensional case. In short, the spectral theorem makes physics governed by
normal operators tractable.

The spectral theorem, though, appears powerless when faced with nonnormal and nondiag-
onalizable operators. What then are we to do when confronted by, say, complex interconnected
systems with nonunitary time evolution, by open systems, by structures that emerge on space and
time scales different from the equations of motion, or by other novel physics governed by nonnormal
and not-necessarily-diagonalizable operators? Where is the comparably constructive framework for
calculations beyond the standard spectral theorem? Fortunately, portions of the necessary general-
ization have been made within pure mathematics,'® some finding applications in engineering and
control.!”-!® However, what is available is incomplete. And, even that which is available is often not
in a form adapted to perform calculations that lead to quantitative predictions.

B. Synopsis

Here, we build on previous work in functional analysis and operator theory to provide both a
rigorous and constructive foundation for physically relevant calculations involving not-necessarily-
diagonalizable operators. In effect, we extend the spectral theorem for normal operators to a broader
setting, allowing generalized “modes” of nondiagonalizable systems to be identified and manipulated.
The meromorphic functional calculus we develop extends Taylor series expansion and standard
holomorphic functional calculus to analyze arbitrary functions of not-necessarily-diagonalizable
operators. It readily handles singularities arising when poles (or zeros) of the function coincide with
poles of the operator’s resolvent—poles that appear precisely at the operator’s eigenvalues. Pole—pole
and pole—zero interactions substantially modify the complex-analytic residues within the functional
calculus. A key result is that the negative-one power of a singular operator exists in the meromorphic
functional calculus. It is the Drazin inverse, a powerful tool that is receiving increased attention
in stochastic thermodynamics and elsewhere. Furthermore, we derive consequences from the more
familiar holomorphic functional calculus that readily allow spectral decomposition of nondiagonaliz-
able operators in terms of spectral projections and left and right generalized eigenvectors—decanting
the abstract mathematical theory into a more tractable framework for analyzing complex physical
systems.
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Taken together, the functional calculus, Drazin inverse, and methods to manipulate particular
eigenspaces, are key to a thorough-going analysis of many complex systems, many now accessible
for the first time. Indeed, the framework has already been fruitfully employed in several specific
applications, including closed-form expressions for signal processing and information measures of
hidden Markov processes,'”>* compressing stochastic processes over a quantum channel,>*?> and
stochastic thermodynamics.?®>” However, the techniques are sufficiently general they will be much
more widely useful. We envision new opportunities for similar detailed analyses, ranging from bio-
physics to quantum field theory, wherever restrictions to normal operators and diagonalizability have
been roadblocks.

With this broad scope in mind, we develop the mathematical theory first without reference to
specific applications and disciplinary terminology. We later give pedagogical (yet, we hope, interest-
ing) examples, exploring several niche, but important applications to finite hidden Markov processes,
basic stochastic process theory, nonequilibrium thermodynamics, signal processing, and nonlinear
dynamical systems. At a minimum, the examples and their breadth serve to better acquaint readers
with the basic methods required to employ the theory.

We introduce the meromorphic functional calculus in Sec. III through Sec. IV, after necessary
preparation in Sec. II. Section V A further explores and gives a new formula for eigenprojectors,
which we refer to here simply as projection operators. Section V B makes explicit their general rela-
tionship with eigenvectors and generalized eigenvectors and clarifies the orthonormality relationship
among left and right generalized eigenvectors. Section V B 4 then discusses simplifications of the
functional calculus for special cases, while Sec. VI A takes up the spectral properties of transition
operators.

Section VI then turns to several applications that demonstrate the theoretical results’ broad util-
ity. In particular, the advantage of the meromorphic approach over holomorphic is demonstrated
in deriving Eq. (46) of Sec. VI D on stochastic thermodynamics. This enables a general operator
approach to analyzing the nonequilibrium thermodynamics of complex systems. Generally, though,
each application benefits from the meromorphic approach via the analytical forms derived from
it. Specifically, the meromorphic calculus allows one to derive: (i) arbitrary powers of an oper-
ator (Eq. (25)), explicitly including the qualitatively distinct contribution of the zero eigenspace;
(ii) negative powers (Eq. (28)) and the Drazin inverse (Eq. (29)); and (iii) key formulae for the spec-
tral projection operators, including Eq. (35). These results make the applications tractable. In this
way, the applications demonstrate how the meromorphic toolset is used to analyze linear operators
in a range of settings. The result is an efficient and intuitive analysis of the structure and randomness
in complex systems. Finally, Sec. VII closes with suggestions for future applications and research
directions.

Il. SPECTRAL PRIMER

The following is relatively self-contained, assuming basic familiarity with linear algebra at the
level of Refs. 15 and 17—including eigen-decomposition and knowledge of the Jordan canonical
form, partial fraction expansion (see Ref. 28), and series expansion—and basic knowledge of complex
analysis—including the residue theorem and calculation of residues at the level of Ref. 29. For those
lacking a working facility with these concepts, a quick review of Sec. VI’s applications may motivate
reviewing them. In this section, we introduce our notation and, in doing so, remind the reader of
certain basic concepts in linear algebra and complex analysis that will be used extensively in the
following.

To begin, we restrict attention to operators with finite representations and only sometimes do
we take the limit of dimension going to infinity. That is, we do not consider infinite-rank operators
outright. While this runs counter to previous presentations in mathematical physics that consider only
infinite-dimensional operators, the upshot is that they—as limiting operators—can be fully treated
with a countable point spectrum. We present examples of this later on. Accordingly, we restrict our
attention to operators with at most a countably infinite spectrum. Such operators share many features
with finite-dimensional square matrices, and so we recall several elementary but essential facts from
matrix theory used repeatedly in the main development.



065305-5 P. M. Riechers and J. P. Crutchfield AIP Advances 8, 065305 (2018)

If A is a finite-dimensional square matrix, then its spectrum is simply the set A4 of its eigenvalues:
Aa={LeC:det(Ml — A)=0},

where det(-) is the determinant of its argument and / is the identity matrix. The algebraic multiplicity
ay, of eigenvalue A is the power of the term (z — A) in the characteristic polynomial det(z/ — A). In
contrast, the geometric multiplicity g is the dimension of the kernel of the transformation A — Af or,
equivalently, the number of linearly independent eigenvectors associated with the eigenvalue. The
algebraic and geometric multiplicities are all equal when the matrix is diagonalizable.

Since there can be multiple subspaces associated with a single eigenvalue, corresponding to
different Jordan blocks in the Jordan canonical form, it is structurally important to distinguish the
index of the eigenvalue associated with the largest of these subspaces.*’

Definition 1. Eigenvalue \’s index v, is the size of the largest Jordan block associated with \.

If z ¢ A4, then v, = 0. Note that the index of the operator A itself is sometimes discussed.?! In
such contexts, the index of A is vo. Hence, v; corresponds to the index of A — Al

The index of an eigenvalue gives information beyond what the algebraic and geometric multi-
plicities themselves yield. Nevertheless, for A € Ay, it is always true that vy — 1 < a) — g5 < a), — 1.
In the diagonalizable case, a) = gj and v = 1 for all A € A4.

The following employs basic features of complex analysis extensively in conjunction with linear
algebra. Let us therefore review several elementary notions in complex analysis. Recall that a holo-
morphic function is one that is complex differentiable throughout the domain under consideration.
A pole of order n at zp € C is a singularity that behaves as h(z)/(z — z0)" as z — zo, where h(z) is
holomorphic within a neighborhood of zy and h(zg) # 0. We say that h(z) has a zero of order m at
z1 if 1/h(z) has a pole of order m at z;. A meromorphic function is one that is holomorphic except
possibly at a set of isolated poles within the domain under consideration.

Defined over the continuous complex variable z € C, A’s resolvent:

R(z;A)=(zl - A)7!,

captures all of A’s spectral information through the poles of R(z; A)’s matrix elements. In fact, the
resolvent contains more than just A’s spectrum: we later show that the order of each pole gives the
index v of the corresponding eigenvalue.

The spectrum A4 can be expressed in terms of the resolvent. Explicitly, the point spectrum
(i.e., the set of eigenvalues) is the set of complex values z at which z/ — A is not a one-to-one
mapping, with the implication that the inverse of z/ — A does not exist:

Ax={heC:R(O\;A)#inv(M — A)},

where inv(-) is the inverse of its argument. Later, via our investigation of the Drazin inverse, it should
become clear that the resolvent operator can be self-consistently defined at the spectrum, despite the
lack of an inverse.

For infinite-rank operators, the spectrum becomes more complicated. In that case, the right point
spectrum (the point spectrum of A) need not be the same as the left point spectrum (the point spec-
trum of A’s dual AT). Moreover, the spectrum may grow to include non-eigenvalues z for which
the range of zI — A is not dense in the vector space it transforms or for which z/ — A has dense
range but the inverse of z/ — A is not bounded. These two settings give rise to the so-called residual
spectrum and continuous spectrum, respectively.> To mitigate confusion, it should be noted that the
point spectrum can be continuous, yet never coincides with the continuous spectrum just described.
Moreover, understanding only countable point spectra is necessary to follow the developments
here.

Each of A’s eigenvalues A has an associated projection operator A), which is the residue of the
resolvent as z — A.'* Explicitly:

Ay=Res((zl —A)!, z-)),

where Res(-, z — A) is the element-wise residue of its first argument as z — A. The projection operators
are orthonormal:
AyAp =6y pA;. (1)
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and sum to the identity:
1= Z As. 2)
}\.EAA
The following discusses in detail and then derives several new properties of projection operators.

lll. FUNCTIONAL CALCULI

In the following, we develop an extended functional calculus that makes sense of arbitrary
functions f () of a linear operator A. Within any functional calculus, one considers how A’s eigenvalues
map to the eigenvalues of f(A); which we call a spectral mapping. For example, it is known that
holomorphic functions of bounded linear operators enjoy an especially simple spectral mapping

theorem:33

Ar@) =f(Aa).
To fully appreciate the meromorphic functional calculus, we first state and compare the main features
and limitations of alternative functional calculi.

A. Taylor series

Inspired by the Taylor expansion of scalar functions:

X £(n)
f@=Y1"0 gy
n=0

n:

a calculus for functions of an operator A can be based on the series:

AN,
fay=> —=@-¢n, (3)
=
where £V (&) is the n' derivative of f(z) evaluated at z = £.
This is often used, for example, to express the exponential of A as:

O An
€A = Z —'
i n!
This particular series-expansion is convergent for any A since e* is entire, in the sense of com-
plex analysis. Unfortunately, even if it exists there is a limited domain of convergence for most
functions. For example, suppose f(z) has poles and choose a Maclaurin series; i.e., & = 0 in
Eq. (3). Then the series only converges when A’s spectral radius is less than the radius of the

innermost pole of f(z). Addressing this and related issues leads directly to alternative functional
calculi.

B. Holomorphic functional calculus

Holomorphic functions are well behaved, smooth functions that are complex differentiable.
Given a function f(-) that is holomorphic within a disk enclosed by a counterclockwise contour C,
its Cauchy integral formula is given by:

Fla)= — 95 FOG-a)y d, 4
2ni Jc

Taking this as inspiration, the holomorphic functional calculus performs a contour integration of the
resolvent to extend f(-) to operators:

1 -

A== f@@E-A)"ds, 5)

Tl CAA
where Cp, is a closed counterclockwise contour that encompasses A4. Assuming that f(z) is holo-
morphic at z = A for all A € Ay, a nontrivial calculation®® shows that Eq. (5) is equivalent to the
holomorphic calculus defined by:

1L o(m) A
=y S Wy, ©

!
)\,EAA m=0 m:
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After some necessary development, we will later derive Eq. (6) as a special case of our meromorphic
functional calculus, such that Eq. (6) is valid whenever f(z) is holomorphic at z = A for all A € A4.

The holomorphic functional calculus was first proposed in Ref. 30 and is now in wide use;
e.g., see [Ref. 17, p. 603]. It agrees with the Taylor-series approach whenever the infinite series
converges, but gives a functional calculus when the series approach fails. For example, using the
principal branch of the complex logarithm, the holomorphic functional calculus admits log(A) for any
nonsingular matrix, with the satisfying result that ¢'°4) = A, Whereas, the Taylor series approach
fails to converge for the logarithm of most matrices even if the expansion for, say, log(l — z) is
used.

The major shortcoming of the holomorphic functional calculus is that it assumes f(z) is holo-
morphic at A4. Clearly, if f(z) has a pole at some z € Ay, then Eq. (6) fails. An example of such a
failure is the negative-one power of a singular operator, which we take up later on.

Several efforts have been made to extend the holomorphic functional calculus. For example,
Refs. 34 and 35 define a functional calculus that extends the standard holomorphic functional cal-
culus to include a certain class of meromorphic functions that are nevertheless still required to be
holomorphic on the point spectrum (i.e., on the eigenvalues) of the operator. However, we are not
aware of any previous work that introduces and develops the consequences of a functional calcu-
lus for functions that are meromorphic on the point spectrum—which we take up in the next few
sections.

C. Meromorphic functional calculus

Meromorphic functions are holomorphic except at a set of isolated poles of the function. The
resolvent of a finite-dimensional operator is meromorphic, since it is holomorphic everywhere except
for poles at the eigenvalues of the operator. We will now also allow our function f(z) to be meromorphic
with possible poles that coincide with the poles of the resolvent.

Inspired again by the Cauchy integral formula of Eq. (4), but removing the restriction to holomor-
phic functions, our meromorphic functional calculus instead employs a partitioned contour integration
of the resolvent:

f=Y o= 56 FQR@ AV dz,
MeAA
where C), is a small counterclockwise contour around the eigenvalue L. This and a spectral decompo-
sition of the resolvent (to be derived later) extends the holomorphic calculus to a much wider domain,

defining: - e
f@= )] D AA )" 95 oy & (7)

reAy m=0
The contour is integrated using knowledge of f(z) since meromorphic f(z) can introduce poles and
zeros at A4 that interact with the resolvent’s poles.

The meromorphic functional calculus agrees with the Taylor-series approach whenever the series
converges and agrees with the holomorphic functional calculus whenever f(z) is holomorphic at Ay4.
However, when both the previous functional calculi fail, the meromorphic calculus extends the domain
of f(A) to yield surprising, yet sensible answers. For example, we show that within it, the negative-one
power of a singular operator is the Drazin inverse—an operator that effectively inverts everything
that is invertible.

The major assumption of our meromorphic functional calculus is that the domain of operators
must have a spectrum that is at most countably infinite—e.g., A can be any compact operator. A
related limitation is that singularities of f(z) that coincide with A4 must be isolated singularities.
Nevertheless, we expect that these restrictions can be lifted with proper treatment, as discussed in
fuller context later.

IV. MEROMORPHIC SPECTRAL DECOMPOSITION

The preceding gave an overview of the relationship between alternative functional calculi and
their trade-offs, highlighting the advantages of the meromorphic functional calculus. This section
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leverages these advantages and employs a partial fraction expansion of the resolvent to give a general
spectral decomposition of almost any function of any operator. Then, since it plays a key role in
applications, we apply the functional calculus to investigate the negative-one power of singular
operators—thus deriving, what is otherwise an operator defined axiomatically, the Drazin inverse
from first principles.

A. Partial fraction expansion of the resolvent

The elements of A’s resolvent are proper rational functions that contain all of A’s spectral infor-
mation. (Recall that a proper rational function r(z) is aratio of polynomials in z whose numerator has
degree strictly less than the degree of the denominator.) In particular, the resolvent’s poles coincide
with A’s eigenvalues since, for z ¢ Ay:

cT cT
det(zl —A)  [le,(z =M@

Rz A)=(@l -A) " = ®)
where a, is the algebraic multiplicity of eigenvalue A and C is the matrix of cofactors of zI — A. That
is, C’s transpose C' is the adjugate of zI — A:

C" =adj(zl - A),

whose elements will be polynomial functions of z of degree less than 3y e, a..

Recall that the partial fraction expansion of a proper rational function r(z) with poles in A allows
a unique decomposition into a sum of constant numerators divided by monomials in z — A up to
degree a;, when a; is the order of the pole of (z) at A € A.”® Equation (8) thus makes it clear that
the resolvent has the unique partial fraction expansion:

(l",hfl

R@EA)= ) ) mfxm, )

reAy m=0

where {A)_, } is the set of matrices with constant entries (nor functions of z) uniquely determined
elementwise by the partial fraction expansion. However, R(z; A)’s poles are not necessarily of the
same order as the algebraic multiplicity of the corresponding eigenvalues since the entries of C, and
thus of C', may have zeros at A’s eigenvalues. This has the potential to render A;_,, equal to the zero
matrix 0.

The Cauchy integral formula indicates that the constant matrices {Aj_, } of Eq. (9) can be obtained
as the residues:

|
Apm=— 95 (z = W"R(z; A)dz, (10)
2ri Je,

where the residues are calculated elementwise. The projection operators Aj; associated with each
eigenvalue A were already referenced in Sec. II, but can now be properly introduced as the A;
matrices:

A=A an
1
- — b RzAV (12)
2ri Je,

Since R(z; A)’s elements are rational functions, as we just showed, it is analytic except at a finite
number of isolated singularities—at A’s eigenvalues. In light of the residue theorem, this motivates
the Cauchy-integral-like formula that serves as the starting point for the meromorphic functional
calculus:

1
=3 5 9§Ckf(z)R<z;A)dz. (13)

KEAA

Let’s now consider several immediate consequences.
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B. Decomposing the identity

Even the simplest applications of Eq. (13) yield insight. Consider the identity as the opera-
tor function f(A) = A% =] that corresponds to the scalar function f(z) = 7% = 1. Then, Eq. (13)

implies:
1
I = Z 2_71'1 ﬁ; R(Z;A)dZZ Z A}w

LEAL IXI\VA

This shows that the projection operators are, in fact, a decomposition of the identity, as anticipated
in Eq. (2).

C. Dunford decomposition, decomposed

For f(A) = A, Egs. (13) and (10) imply that:

1
A= — R(z;A)dz
Z P 5602 (z;A)dz
AEAY A

= [% 56 R(z; A)dz + 7 56 (2~ x)R(z;A)dz]
G G

KEAA
= > (Mo +An). (14)
)\EAA

We denote the important set of nilpotent matrices A;_; that project onto the generalized eigenspaces
by relabeling them:

Ny=A4A5, (15)
1
=— @ (@-MR(z;A)dz. (16)
2mi C.

Equation (14) is the unique Dunford decomposition:'® A = D + N, where D = Dihea, My, is
diagonalizable, N = }};ca, Ny, is nilpotent, and D and N commute: [D, N] = 0. This is also known as
the Jordan—Chevalley decomposition.

The special case where A is diagonalizable implies that N = 0. And so, Eq. (14) simplifies to:

A=Z)\Ak.

7\.EAA

D. The resolvent, resolved

As shown in Ref. 14 and can be derived from Eqgs. (12) and (16):

AkA{ = 6K,{A7x
and
ANy =6y N
Due to these, our spectral decomposition of the Dunford decomposition implies that:
Ny=As (A - Z LAZ) = AL(A = Ay) = A (A - M). (17)
[43,V
Moreover:
Apm=Ar(A—M)". (18)

It turns out that for m > 0: A; ,, = N{”. (See also [Ref. 14, p. 483].) This leads to a generalization
of the projection operator orthonormality relations of Eq. (1). Most generally, the operators of {A; , }
are mutually related by:

Ak,mA_{,n = 6X,§Ak,m+n . (19)
Finally, if we recall that the index v;, is the dimension of the largest associated subspace, we find that
the index of ) characterizes the nilpotency of Ny: N =0 for m > v;. That is:

Aym=0 for m > v. (20)
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Returning to Eq. (9), we see that all Aj, ,,, with m > v, are zero-matrices and so do not contribute
to the sum. Thus, we can rewrite Eq. (9) as:

W— 1

1
R@AI= D) D) gy Ao @1
reAy m=0

or:

' ~ V;Nfl 1 }\‘ ”

R(Z,A)— Z Z WA)L(A - I) . (22)
LeAp m=0

forz ¢ Ay.

The following sections sometimes use Aj_,, in place of Ay(A — AI)™. This is helpful both for
conciseness and when applying Eq. (19). Nonetheless, the equality in Eq. (18) is a useful one to keep
in mind.

E. Meromorphic functional calculus

Inlight of Eq. (13), Eq. (21) together with Eq. (18) allow us to express any function of an operator
simply and solely in terms of its spectrum (i.e., its eigenvalues for the finite dimensional case), its
projection operators, and itself:

V)\—l
1 S(@)
OEIDW ) e 23)

reA, m=0

In obtaining Eq. (23) we finally derived Eq. (7), as promised earlier in Sec. III C. Effectively, by
modulating the modes associated with the resolvent’s singularities, the scalar function f(-) is mapped
to the operator domain, where its action is expressed in each of A’s independent subspaces.

F. Evaluating the residues

Interpretation aside, how does one use this result? Equation (23) says that the spectral
decomposition of f(A) reduces to the evaluation of several residues, where:

1
Res(g(z), z—A) = i SEC 8(z) dz.

So, to make progress with Eq. (23), we must evaluate function-dependent residues of the form:

Res(f(2)/(z = M)™!, z—>1).

If f(z) were holomorphic at each A, then the order of the pole would simply be the power of the
denominator. We could then use Cauchy’s differential formula for holomorphic functions:

@=L a o4)
Cq

2ni Je, (z—ayt

for f(z) holomorphic at a. And, the meromorphic calculus would reduce to the holomorphic calculus.
Often, f(z) will be holomorphic at least at some of A’s eigenvalues. And so, Eq. (24) is still locally a
useful simplification in those special cases.

In general, though, f(z) introduces poles and zeros at A € A, that change their orders. This is
exactly the impetus for the generalized functional calculus. The residue of a complex-valued function
g(z) around its isolated pole A of order n + 1 can be calculated from:

1. a ;
Res(g(@), z—4) = — lim d—z,,[(z—m *g(2)].

G. Decomposing At

Equation (23) says that we can explicitly derive the spectral decomposition of powers of the
operator A. Of course, we already did this for the special cases of A? and A'. The goal, though, is to
do this in general.

For f(A) = AL — f(z) = z*, z = 0 can be either a zero or a pole of f(z), depending on the value
of L. In either case, an eigenvalue of A = 0 will distinguish itself in the residue calculation of A" via
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its unique ability to change the order of the pole (or zero) at z = 0. For example, at this special value
of A and for integer L > 0, A = 0 induces poles that cancel with the zeros of f(z) = z*, since z* has
a zero at z = 0 of order L. For integer L < 0, an eigenvalue of A = 0 increases the order of the z =0
pole of f(z) = z&. For all other eigenvalues, the residues will be as expected. Hence, from Eq. (23)
and inserting f(z) = z~, for any L € C:

T dm L
=ditim, L, L5 =20 [ (L-nt)

= wo (1 L
AL = [Z Z Ap(A=M) (% 9§C el _ZWH dz)

V()fl
1
+[0eA § ApA" | — L=m=1 g4
[ Al 0 (2711'95;0Z Z)

reAq m=0 =0
120 >
vl L vo—1
= [Z > ( )XL""AA (A- M)’”] +10€AA] Y 61mAA™, 25)
m
reAy m=0 =0

A0

where (51 ) is the generalized binomial coefficient:

(Z):%l_[@—nn) with (g):l, (26)
" n=1

and [0 € A4] is the Iverson bracket which takes on value 1 if zero is an eigenvalue of A and O
if not. Ay, was replaced by A)(A — M)™ to suggest the more explicit calculations involved with
evaluating any A”. Equation (25) applies to any linear operator with only isolated singularities in its
resolvent.

The eigen-decomposition of polynomials implied by Eq. (25) makes the contribution of the
zero eigenvalue more explicit than previous treatments and enables closed-form expressions, e.g.,
for correlation functions, where the zero eigenvalue makes a qualitatively distinct contribution.?!->2
Consequentially, this formulation can lead to the recognition of coexistent finite and infinite range
physical phenomena of different mechanistic origin.>*>*

If L is a nonnegative integer such that L > v, — 1 for all A € A4, then:

-1
A L _
AL = Z Z (m)xL L 27)
reAq m=0
r#0
where (f;l) is now reduced to the traditional binomial coefficient L!/(m!(L — m)!).

H. Drazin inverse

If L is any negative integer, then (_rl’f') can be written as a traditional binomial coefficient
(—=1y" ("), yielding:

-1

A2y 2(—1)’"('“*,,T’I)X“L“'”Ax,m, (28)

reAy m=0
2£0

for—|L|e{-1,-2,-3,...}.

Thus, negative powers of an operator can be consistently defined even for noninvertible operators.
In light of Egs. (25) and (28), it appears that the zero eigenvalue does not even contribute to the
function. It is well known, in contrast, that it wreaks havoc on the naive, oft-quoted definition of a
matrix’s negative power:

2 adid) | adi(d)
~det(A)  [Thea, Mo

since this would imply dividing by zero. If we can accept large positive powers of singular matrices—
for which the zero eigenvalue does not contribute—it seems fair to also accept negative powers that
likewise involve no contribution from the zero eigenvalue.
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Editorializing aside, we note that extending the definition of A~! to the domain including singular
operators via Egs. (25) and (28) implies that:

AILLAIE] Z 4114 ILI
= AILI=IE] for |L| > |€] + vo,

which is a very sensible and desirable condition. Moreover, we find that AA~Y =T — A,.
Specifically, the negative-one power of any square matrix is in general not the same as the matrix
inverse since inv(A) need not exist. However, it is consistently defined via Eq. (28) to be:

V)\—l

A= T T A (29)

reAq\ {0} m=0

This is the Drazin inverse AP of A. Note that it is not the same as the Moore-Penrose pseudo-
inverse.36-37

Although the Drazin inverse is usually defined axiomatically to satisfy certain criteria,’® it is
naturally derived as the negative one power of a singular operator in the meromorphic functional
calculus. We can check that it indeed satisfies the axiomatic criteria for the Drazin inverse, enumerated
according to historical precedent:

(1) AAPA = A0
) APAAP = AP
) [A,AP]=0,

which gives rise to the Drazin inverse’s moniker as the {1'°, 2, 5}-inverse.?® The analytical form of
Eq. (29) has been teased out previously by other means; see, e.g., Ref. 38 and for other settings see
Refs. 39 and 40. Nevertheless, due to its utility in application, it is noteworthy and appealing that
the Drazin inverse falls out organically in the meromorphic functional calculus, as the negative-one
power, in contrast to its otherwise rather esoteric axiomatic origin.

While A~! always exists, the resolvent is nonanalytic at z = 0 for a singular matrix. Effectively,
the meromorphic functional calculus removes the nonanalyticity of the resolvent in evaluating A~!.
As aresult, as we can see from Eq. (29), the Drazin inverse inverts what is invertible; the remainder
is zeroed out.

Of course, whenever A is invertible, A~! is equal to inv(A). However, we should not confuse
this coincidence with equivalence. Moreover, despite historic notation there is no reason that the
negative-one power should in general be equivalent to the inverse. Especially, if an operator is not
invertible! To avoid confusing A~ with inv(A), we use the notation AP for the Drazin inverse of A.
Still, A? = inv(A), whenever 0 ¢ Ay4.

Amusingly, this extension of previous calculi lets us resolve an elementary but fundamental
question: What is 07'? Tt is certainly not infinity. Indeed, it is just as close to negative infinity!
Rather: 0~ = 0 # inv(0).

Although Eq. (29) is a constructive way to build the Drazin inverse, it imposes more work
than is actually necessary. Using the meromorphic functional calculus, we can derive a new, simple
construction of the Drazin inverse that requires only the original operator and the eigenvalue-0
projector.

First, assume that A is an isolated singularity of R(z; A) with finite separation at least € distance
from the nearest neighboring singularity. And, consider the operator-valued function /¢ defined via
the RHS of:

A =fA) =55 95 @I-A)y"de,
Mee'®
with A + €€’ defining an e-radius circular contour around A. Then we see that:
fO=h @ dr=leeCii-t<el. (30)
htee!

where [z € C: |z —\| < €] is the Iverson bracket that takes on value 1 if z is within e-distance of A and
0 if not.
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Second, we use this to find that, for any ¢ € C \ {0}:

K (z+cff@) ™
(A+cAp) " = A e O ———"—dz
PIPWINE)

_ 1
hehs m=0 o (@=nmr

V()*]

-1
(z+¢)
=AP 4 3 AT
i Zm+]
m=0 Co

vo—1
=P+ ) ApA™(=1)" [, 31)
m=0
where we asserted that the contour Cy exists within the finite e-ball about the origin.
Third, we note that A + cAy is invertible for all ¢ # 0; this can be proven by multiplying each
side of Eq. (31) by A + cAg. Hence, (A + cAg)~' =inv(A + cAg) for all ¢ # 0.
Finally, multiplying each side of Eq. (31) by I — Ay, and recalling that A¢pAo, » = Ao.m, we find
a useful expression for calculating the Drazin inverse of any linear operator A, given only A and Ay.
Specifically:

AP = (1 = Ap)A + cAp) ™" (32)
which is valid for any ¢ € C \ {0}. Eq. (32) generalizes the result found specifically for ¢ = —1 in
Ref. 41.

For the special case of ¢ = —1, it is worthwhile to also consider the alternative construction of
the Drazin inverse implied by Eq. (31):

vo—1
AP = (A - Ap)™! +A0(Z Am). (33)

m=0
By a spectral mapping (A — 1 — A, for A € Ar), the Perron—Frobenius theorem and Eq. (31) yield
an important consequence for any stochastic matrix 7. The Perron—Frobenius theorem guarantees
that 7’s eigenvalues along the unit circle are associated with a diagonalizable subspace. In particular,

v1 = 1. Spectral mapping of this result means that 7’s eigenvalue 1 maps to the eigenvalue O of
I —-Tand T = — T)p. Moreover:

[I-T)+T "' = -T)P+ Ty,

since vy = 1. This corollary of Eq. (31) (with ¢ = 1) corresponds to a number of important and well
known results in the theory of Markov processes. Indeed, Z = (I — T +T)~! is called the fundamental
matrix in that setting.*>

I. Consequences and generalizations

For an infinite-rank operator A with a continuous spectrum, the meromorphic functional calculus
has the natural generalization:

fA)= ZL 9§ f@) - A dz, (34)
Tl CAA

where the contour Cy, encloses the (possibly continuous) spectrum of A without including any
unbounded contributions from f(z) outside of Cy,. The function f(z) is expected to be meromorphic
within Cy,. This again deviates from the holomorphic approach, since the holomorphic functional
calculus requires that f(z) is analytic in a neighborhood around the spectrum; see Sec. VII of Ref. 43.
Moreover, Eq. (34) allows an extension of the functional calculus of Refs. 34, 35, and 44, since the
function can be meromorphic at the point spectrum in addition being meromorphic on the residual
and continuous spectra.

In either the finite- or infinite-rank case, whenever f(z) is analytic in a neighborhood around
the spectrum, the meromorphic functional calculus agrees with the holomorphic. Whenever f(z) is
not analytic in a neighborhood around the spectrum, the function is undefined in the holomorphic
approach. In contrast, the meromorphic approach extends the function to the operator-valued domain
and does so with novel consequences.
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In particular, when f(z) is not analytic in a neighborhood around the spectrum—say f(z) is
nonanalytic within A’s spectrum at Zf C Ay—then we expect to lose both homomorphism and
spectral mapping properties:

e Loss of homomorphism: f1(A)f2(A) # (f1 - f2)(A);
e Loss of naive spectral mapping: f(As\Zr) C Ag(a)-

A simple example of both losses arises with the Drazin inverse, above. There, fi(z) = z~!.

Taking this and f>(z) = z combined with singular operator A leads to the loss of homomorphism:
APA #1. As for the second property, the spectral mapping can be altered for the candidate spectra
at E¢ via pole—pole or pole—zero interactions in the complex contour integral. For f(A) = A~ I, how
does A’s eigenvalue of 0 get mapped into the new spectrum of AP? A naive application of the
spectral mapping theorem might seem to yield an undefined quantity. But, using the meromorphic
functional calculus self-consistently maps the eigenvalue as 0~ = 0. It remains to be explored whether
the full spectral mapping is preserved for any function f(A) under the meromorphic interpretation
of f(M).

It should now be apparent that extending functions via the meromorphic functional calculus
allows one to express novel mathematical properties, some likely capable of describing new physical
phenomena. At the same time, extra care is necessary. The situation is reminiscent of the loss of
commutativity in non-Abelian operator algebra: not all of the old rules apply, but the gain in nuance
allows for mathematical description of important phenomena.

We chose to focus primarily on the finite-rank case here since it is sufficient to demonstrate the
utility of the general projection-operator formalism. Indeed, there are ample nontrivial applications
in the finite-rank setting that deserve attention. To appreciate these, we now turn to address the
construction and properties of general eigenprojectors.

V. CONSTRUCTING DECOMPOSITIONS

At this point, we see that projection operators are fundamental to functions of an operator. This
prompts the practical question of how to actually calculate them. The next several sections address this
by deriving expressions with both theoretical and applied use. We first develop the projection operators
associated with index-one eigenvalues. We then explicate the relationship between eigenvectors,
generalized eigenvectors, and projection operators for normal, diagonalizable, and general matrices.
Finally, we show how the general results specialize in several common cases of interest. After these,
we turn to examples and applications.

A. Projection operators of index-one eigenvalues

To obtain the projection operators associated with each index-one eigenvalue L € {{ € Au:
v = 1}, we apply the functional calculus to an appropriately chosen function of A, finding:

ve-1 Ag [T ce (z=0¢
(A= Dye = "’95 o &
[1;! §§A mZO 2mi Ce (z — &ym+l
Py
1 [1 ZSQ)A (z—=Q¢
=A; — —d
)L27Tl' G, Z— }\4 ¢
=a [ [o- o=
Zehy
#h
Therefore, if v; = 1:
A= TV
Ay = (—k 1 ) . (35)
[ —¢

£#h

As convenience dictates in our computations, we let v, — a, — g + 1 or even vy — a; in Eq. (35),
since multiplying A; by (A — £I)/(\ — ) has no effect for € Ap\{LA} if v, = 1.
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Equation (35) generalizes a well known result that applies when the index of all eigenvalues is
one. That is, when the operator is diagonalizable, we have:

To the best of our knowledge, Eq. (35) is original.

Since eigenvalues can have index larger than one, not all projection operators of a nondiagonal-
izable operator can be found directly from Eq. (35). Even so, it serves three useful purposes. First,
it gives a practical reduction of the eigen-analysis by finding all projection operators of index-one
eigenvalues. Second, if there is only one eigenvalue that has index larger than one—what we call the
almost diagonalizable case—then Eq. (35), together with the fact that the projection operators must
sum to the identity, does give a full solution to the set of projection operators. Third, Eq. (35) is a
powerful theoretical tool that we can use directly to spectrally decompose functions, for example,
of a stochastic matrix whose eigenvalues on the unit circle are guaranteed to be index-one by the
Perron—Frobenius theorem.

Although index-one expressions have some utility, we need a more general procedure to obtain
all projection operators of any linear operator. Recall that, with full generality, projection operators
can also be calculated directly via residues, as in Eq. (12).

An alternative procedure—one that extends a method familiar at least in quantum mechanics—is
to obtain the projection operators via eigenvectors. However, quantum mechanics always concerns
itself with a subset of diagonalizable operators. What is the necessary generalization? For one, left
and right eigenvectors are no longer simply conjugate transposes of each other. More severely, a full
set of spanning eigenvectors is no longer guaranteed and we must resort to generalized eigenvectors.
Since the relationships among eigenvectors, generalized eigenvectors, and projection operators are
critical to the practical calculation of many physical observables of complex systems, we collect these
results in the next section.

B. Eigenvectors, generalized eigenvectors, and projection operators

Two common questions regarding projection operators are: Why not just use eigenvectors? And,
why not use the Jordan canonical form? First, the eigenvectors of a defective matrix do not form
a complete basis with which to expand an arbitrary vector. One needs generalized eigenvectors for
this. Second, some functions of an operator require removing, or otherwise altering, the contribution
from select eigenspaces. This is most adroitly handled with the projection operator formalism where
different eigenspaces (correlates of Jordan blocks) can effectively be treated separately. Moreover,
even for simple cases where eigenvectors suffice, the projection operator formalism simply can be
more calculationally or mathematically convenient.

That said, it is useful to understand the relationship between projection operators and generalized
eigenvectors. For example, it is often useful to create projection operators from generalized eigen-
vectors. This section clarifies their connection using the language of matrices. In the most general
case, we show that the projection operator formalism is usefully concise.

1. Normal matrices

Unitary, Hermitian, skew-Hermitian, orthogonal, symmetric, and skew-symmetric matrices are
all special cases of normal matrices. As noted, normal matrices are those that commute with their
Hermitian adjoint (complex-conjugate transpose): AA” = ATA. Moreover, a matrix is normal if and
only if it can be diagonalized by a unitary transformation: A= UAU", where the columns of the unitary
matrix U are the orthonormal right eigenvectors of A corresponding to the eigenvalues ordered along
the diagonal matrix A. For an M-by-M matrix A, the eigenvalues in A4 are ordered and enumerated
according to the possibly degenerate M-tuple (As) = (Aq, ..., hy). Since an eigenvalue A € Ay has
algebraic multiplicity a; > 1, A appears a;, times in the ordered tuple.

Assuming A is normal, each projection operator A can be constructed as the sum of all ket-bra
pairs of right-eigenvectors corresponding to A composed with their conjugate transpose. We later
introduce bras and kets more generally via generalized eigenvectors of the operator A and its dual
AT. However, since the complex-conjugate transposition rule between dual spaces only applies to a
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ket basis derived from a normal operator, we put off using the bra-ket notation for now so as not to
confuse the more familiar “normal” case with the general case.

To explicitly demonstrate this relationship between projection operators, eigenvectors, and their
Hermitian adjoints in the case of normality, observe that:

MO - 0] 8
0 - 0|}

A=UAU' =iy iy - i ]| |
al
i

= [y dady - Ml || 2| =D N = ) 0y

:T j=1 LEAL
Uy

Evidently, for normal matrices A:

1l
—_
~.
1l
—_

M
= Z (')‘év A 6)\’)\1 ﬁ,ﬁ;
i=1
=074
Moreover:
M
Z Ay = Z iii] =UU" =1,
NeAa i=1

and so on. All of the expected properties of projection operators can be established again in this
restricted setting.

The rows of U~! = UT are A’s left eigenvectors. In this case, they are simply the conjugate
transpose of the right eigenvectors. Note that conjugate transposition is the familiar transformation
rule between ket and bra spaces in quantum mechanics (see, e.g., Ref. 45)—a consequence of the
restriction to normal operators, as we will show. Importantly, a more general formulation of quan-
tum mechanics would not have this same restricted correspondence between the dual ket and bra
spaces.

To elaborate on this point, recall that vector spaces admit dual spaces and dual bases. However,
there is no sense of a dual correspondence of a single ket or bra without reference to a full basis. '
Implicitly in quantum mechanics, the basis is taken to be the basis of eigenstates of any Hermitian
operator, supposedly since observables are self-adjoint.

To allude to an alternative, we note that ﬁ;ﬁj is not only the Hermitian form of inner product
(i, uj)y (where (-, -) denotes the inner product) of the right eigenvector #; with itself, but importantly
also the simple dot-product of the left eigenvector ﬁ; and the right eigenvector ii;, where 1'2; actsas a
linear functional on i;. Contrary to the substantial effort devoted to the inner-product-centric theory of
Hilbert spaces, this latter interpretation of z'i/T iij—in terms of linear functionals and a left-eigenvector
basis for linear functionals—is what generalizes to a consistent and constructive framework for the

spectral theory beyond normal operators, as we will see shortly.
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2. Diagonalizable matrices

By definition, diagonalizable matrices can be diagonalized, but not necessarily via a unitary
transformation. All diagonalizable matrices can nevertheless be diagonalized via the transformation:
A = PAP™!, where the columns of the square matrix P are the not-necessarily-orthogonal right
eigenvectors of A corresponding to the eigenvalues ordered along the diagonal matrix A and where
the rows of P~! are A’s left eigenvectors. Importantly, the left eigenvectors need not be the Hermitian
adjoint of the right eigenvectors. As a particular example, this more general setting is required
for almost any transition dynamic of a Markov chain. In other words, the transition dynamic of
any interesting complex network with irreversible processes serves as an example of a nonnormal

operator.
Given the M-tuple of possibly-degenerate eigenvalues (Ay) = (A, A, ..., Ay), there is

a corresponding M-tuple of linearly-independent right-eigenvectors (A1), 1A2), ..., I\y)) and
a corresponding M-tuple of linearly-independent left-eigenvectors ((Ml, (Azl, ..., (Ayl) such
that:

A|}\]>=)\]|7xj>
and:

M1A =N (N
with the orthonormality condition that:

(Nilkj) = 6i.

To avoid misinterpretation, we stress that the bras and kets that appear above are the left and right
eigenvectors, respectively, and typically do not correspond to complex-conjugate transposition.
With these definitions in place, the projection operators for a diagonalizable matrix can be written:

M
A=) 010, 1.
j=1

Then:
A:ZMK
hEAL
M
=) NIl
J=1
Ml
M2l
= [ M) Ralho) - hrlhad ]|
Aml
MO -0 (M|
0 %o 0| (ol
=[]l ]
0 0 - dar || Ol

=PAP!.

So, we see that the projection operators introduced earlier in a coordinate-free manner have a concrete
representation in terms of left and right eigenvectors when the operator is diagonalizable.

3. Any matrix

Not all matrices can be diagonalized, but all square matrices can be put into Jordan canonical
form via the transformation: A = ¥ JY~!.!7 Here, the columns of the square matrix Y are the linearly
independent right eigenvectors and generalized right eigenvectors corresponding to the Jordan blocks
ordered along the diagonal of the block-diagonal matrix J. And, the rows of Y~ ! are the corresponding
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left eigenvectors and generalized left eigenvectors, but reverse-ordered within each block, as we will
show.

Let there be n Jordan blocks forming the n-tuple (J1, J2, .. ., J,), with 1 <n < M. The k™ Jordan
block J; has dimension m-by-my:

% 1 0 -+ 0 0 0]
0 M 1 0 0
0 M 0
Je= | mj, TOWS
0 M 10
0 0 0 A 1
0 0 0 - 0 M

my columns

such that: 33}, my =M.

Note that eigenvalue A € A4 corresponds to g different Jordan blocks, where g; is the geometric
multiplicity of the eigenvalue A. Indeed: 1= };ca, &.. Moreover, the index v;, of the eigenvalue X is
defined as the size of the largest Jordan block corresponding to A. So, we write this in the current
notation as:

v, = max{6y, mi -

If the index of any eigenvalue is greater than one, then the conventional eigenvectors do not span
the M-dimensional vector space. However, the set of M generalized eigenvectors does form a basis
for the vector space.*®

Given the n-tuple of possibly-degenerate eigenvalues (A4) = (Ay, A2, . . ., A,) Where each eigen-
value A € Ay is listed g), times, there is a corresponding n-tuple of my-tuples of linearly-independent
generalized right-eigenvectors:

(s (RS2 s (5 0),
where, for each A, € (Ay):
(Inme = (7 ), . ™)
and a corresponding n-tuple of my-tuples of linearly-independent generalized left-eigenvectors:
(™D S L D),
where:
@ Dme = (0L L al™)
such that:
(A = MDDy = ) (36)
and:
O = D)= ), (37)

for 0 <m < my — 1, where |7\;0)> =0and (X;O)I =0. Specifically, |}»§<1)) and (k]({l)l are conventional right
and left eigenvectors, respectively.
Most directly, the generalized right and left eigenvectors can be found as the nontrivial solutions

to:

(A=) "y =0
and:

M NA = D)™ =0,
respectively.

It should be clear from Egs. (36) and (37) that:
<}\42m)|(A - 7\-]{1)[ I}\,in)> = <}\‘2m—€) |)\’]((I’l)> — <)\‘;(m) |)\‘]((l’l—f)>’
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form,n, € {0, 1,...,m} and € > 0. At the same time, it is then easy to show that:

Iy = ) =0, i m e <y,

where m, n € {0, 1, ..., my }. Imposing appropriate normalization, we find that:
0\’](.;71) p"/((”)) = 6j,k 6m+n,mk+1~ (38)

Hence, we see that the left eigenvectors and generalized eigenvectors are a dual basis to the right
eigenvectors and generalized eigenvectors. Interestingly though, within each Jordan subspace, the
most generalized left eigenvectors are dual to the least generalized right eigenvectors, and vice
versa.

(To be clear, in this terminology “least generalized” eigenvectors are the standard eigenvectors.
For example, the 0\]((1) | satisfying the standard eigenvector relation 0‘/((1) |[A =My (kzl) | is the least general-
ized left eigenvector of subspace k. By way of comparison, the “most generalized” right eigenvector of
subspace k is Ikg"k)) satisfying the most generalized eigenvector relation (A — A/ )I}»]((m")) = I}»](Cm"_l)) for
subspace k. The orthonormality relation shows that the two are dual correspondents: (Xil)lkl({mk)) =1,
while all other eigen-bra—eigen-ket closures utilizing these objects are null.)

With these details worked out, we find that the projection operators for a nondiagonalizable
matrix can be written as:

n

My
A= 30 S ), (39)

k=1 m=1

And, we see that a projection operator includes all of its left and right eigenvectors and all of its left and
right generalized eigenvectors. This implies that the identity operator must also have a decomposition
in terms of both eigenvectors and generalized eigenvectors:

n my
1-
=3 DT,
k=1 m=1

Let [I)»,((m) Y], denote the column vector:

1
)
s = |
")
and let [(7»;:""+1_m)|]2“= , denote the column vector:
O\(mk)|
k
1-
[<)\-2mk+ m)|]Zk:1 — ;
1
o]

Then, using the above results, and the fact that Eq. (37) implies that ()\Zm+l)|A=)\k0»/(€m+])| +

0\/(:") |, we derive the explicit generalized-eigenvector decomposition of the nondiagonalizable
operator A:
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A=() a)A

}\.EAA

— an i l)\’l(cm)><)\’l({mk+lfm)|A

k=1 m=1

_ZZ |)\’(m)> M <)\'(mk+l m)| +<)\‘(mk m)|

k=1 m=1
[I)»(’")>]’"1 TJ1 0 ---

m=1

<}\-(ml+l m)|
T | fo a2 - ‘ <x’”2“ i
[|)\£lm)>]mn o o0 --- JVL }\‘(’nn"'l m)| my

m=1 m 1

o O

YJiy~!,
where, defining Y as:

[

v [|x3’">>]m o

[|x<’">>]”’"
we are forced by Eq. (38) to recognize that:

[<X§n11+1 m)l]m .

+1-m)
Yyl = [O‘zmz m|]Zz=1

[O\,(mnﬂ —m) | ] m,z

since then Y=Y = I, and we recall that the inverse is guaranteed to be unique.

The above demonstrates an explicit construction for the Jordan canonical form. One advantage we
learn from this explicit decomposition is that the complete set of left eigenvectors and left generalized
eigenvectors (encapsulated in ¥~!) can be obtained from the inverse of the matrix of the complete
set of right eigenvectors and generalized right eigenvectors (encoded in Y) and vice versa. One
unexpected lesson, though, is that the generalized left eigenvectors appear in reverse order within
each Jordan block.

Using Eqgs. (39) and (18) with Eq. (37), we see that the nilpotent operators Ay, with m > 0
further link the various generalized eigenvectors within each subspace k. Said more suggestively,
generalized modes of a nondiagonalizable subspace are necessarily cooperative.

It is worth noting that the left eigenvectors and generalized left eigenvectors form a basis for all
linear functionals of the vector space spanned by the right eigenvectors and generalized right eigen-
vectors. Moreover, the left eigenvectors and generalized left eigenvectors are exactly the dual basis to
the right eigenvectors and generalized right eigenvectors by their orthonormality properties. However,
neither the left nor right eigen-basis is a priori more fundamental to the operator. Sympathetically,
the right eigenvectors and generalized eigenvectors form a (dual) basis for all linear functionals of
the vector space spanned by the left eigenvectors and generalized eigenvectors.

4. Simplified calculi for special cases

In special cases, the meromorphic functional calculus reduces the general expressions above to
markedly simpler forms. And, this can greatly expedite practical calculations and provide physical
intuition. Here, we show which reductions can be used under which assumptions.

For functions of operators with a countable spectrum, recall that the general form of the
meromorphic functional calculus is:

VX—

1
=3 3 A LD a (40)

_ Y ym+l
hehy m=0 i Je, (z=Mh)
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Equations (18) and (39) gave the method to calculate A; _,, in terms of eigenvectors and generalized
eigenvectors.
When the operator is diagonalizable (not necessarily normal), this reduces to:

fA)= Axi.gg @ 4. 41)

= 2ni Je, (z=MN)

where A can now be constructed from conventional right and left eigenvectors, although (Al is not
necessarily the conjugate transpose of IA;).

When the function is analytic on the spectrum of the (not necessarily diagonalizable) operator,
then our functional calculus reduces to the holomorphic functional calculus:

=l m
=y S0, “2)

heA, m=0

When the function is analytic on the spectrum of a diagonalizable (not necessarily normal)
operator this reduces yet again to:
OEDIICTE (43)
)\.EAA
When the function is analytic on the spectrum of a diagonalizable (not necessarily normal)
operator with no degeneracy this reduces even further to:
M
fA= ) f)=—= (44
k; My
Finally, recall that an operator is normal when it commutes with its conjugate transpose. If
the function is analytic on the spectrum of a normal operator, then we recover the simple form
enabled by the spectral theorem of normal operators familiar in physics. That is, Eq. (43) is appli-
cable, but now we have the extra simplification that (Al is simply the conjugate transpose of [A;):
=)

VI. EXAMPLES AND APPLICATIONS

To illustrate the use and power of the simultaneously generalized-and-simplified calculus, we
now adapt it to analyze a suite of applications from quite distinct domains. First, we point to a set
of example calculations for finite-dimensional operators of stochastic processes. Second, we show
that the familiar Poisson process is intrinsically nondiagonalizable, and hint that nondiagonalizability
may be common more generally in semi-Markov processes. Third, we illustrate how commonly the
Drazin inverse arises in nonequilibrium thermodynamics, giving a roadmap to developing closed-
from expressions for a number of key observables. Finally, we round out the applications with a
general discussion of Ruelle-Frobenius—Perron and Koopman operators for nonlinear dynamical
systems.

A. Spectra of stochastic transition operators

The preceding employed the notation that A represents a general linear operator. In the following
examples, we reserve the symbol T for the operator of a stochastic transition dynamic. If the state-
space is finite and has a stationary distribution, then 7 has a representation that is a nonnegative
row-stochastic—all rows sum to unity—transition matrix.

The transition matrix’s nonnegativity guarantees that for each A € A7 its complex conjugate )
is also in Ar. Moreover, the projection operator associated with the complex conjugate of A is the
complex conjugate of 7: T3 = Ty.

If the dynamic induced by T has a stationary distribution over the state space, then the spectral
radius of 7 is unity and all of T’s eigenvalues lie on or within the unit circle in the complex plane.
The maximal eigenvalues have unity magnitude and 1 € Ar. Moreover, an extension of the Perron—
Frobenius theorem guarantees that eigenvalues on the unit circle have algebraic multiplicity equal to
their geometric multiplicity. And, so, v, =1 forall £ € {k € A7:IAl =1}.
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T’s index-one eigenvalue of A = 1 is associated with stationarity of the associated Markov process.
T’s other eigenvalues on the unit circle are roots of unity and correspond to deterministic periodicities
within the process.

All of these results carry over from discrete to continuous time. In continuous time, where
€'% =Ty, 141> T’s stationary eigenvalue of unity maps to G’s stationary eigenvalue of zero. If the
dynamic has a stationary distribution over the state space, then the rate matrix G is row-sum zero
rather than row-stochastic. T’s eigenvalues, on or within the unit circle, map to G’s eigenvalues with
nonpositive real part in the left-hand side of the complex plane.

To reduce ambiguity in the presence of multiple operators, functions of operators, and spectral
mapping, we occasionally denote eigenvectors with subscripted operators on the eigenvalues within
the bra or ket. For example, |0g)=|17) #|0g) = |17 # |07) disambiguates the identification of 10)
when we have operators G, T, G, and T with T = G, T=¢"9, and 0 € Ag, Ag, Ar.

B. Randomness and memory in correlated processes

The generalized spectral theory developed here has recently been applied to give the first closed-
form expressions for many measures of complexity for stochastic processes that can be generated
by probabilistic finite automata.'®>3 Rather than belabor the Kolmogorov—Chaitin notion of com-
plexity which is inherently uncomputable,*’ the new analytic framework here infuses computational
mechanics*® with a means to compute very practical answers about an observed system’s organization
and to address the challenges of prediction.

For example, we can now answer the obvious questions regarding prediction: How random is
a process? How much information is shared between the past and the future? How far into the past
must we look to predict what is predictable about the future? How much about the observed history
must be remembered to predict what is predictable about the future? And so on. The Supplementary
Materials of Ref. 19 exploit the generalized spectral theory to answer these (and more) questions for
the symbolic dynamics of a chaotic map, the spacetime domain for an elementary cellular automata,
and the chaotic crystallographic structure of a close-packed polytypic material as determined from
experimental X-ray diffractograms.

In the context of the current exposition, the most notable feature of the analyses across these
many domains is that our questions, which entail tracking an observer’s state of knowledge about
a process, necessarily induce a nondiagonalizable metadynamic that becomes the central object of
analysis in each case. (This metadynamic is the so-called mixed-state presentation of Refs. 49 and
50.)

This theme, and the inherent nondiagonalizability of prediction, is explored in greater depth
elsewhere.’>?* We also found that another nondiagonalizable dynamic is induced even in the context
of quantum communication when determining how much memory reduction can be achieved if we
generate a classical stochastic process using quantum mechanics.?*

We mention the above nondiagonalizable metadynamics primarily as a pointer to concrete
worked-out examples where the generalized spectral theory has been employed to analyze finitary
hidden Markov processes via explicitly calculated, generalized eigenvectors and projection operators.
We now return to a more self-contained discussion, where we show that nondiagonalizability can
be induced by the simple act of counting. Moreover, the theory developed is then applied to deliver
quick and powerful results.

C. Poisson point processes

The functional calculus leads naturally to a novel perspective on the familiar Poisson counting
process—a familiar stochastic process class used widely across physics and other quantitative sciences
to describe “completely random” event durations that occur over a continuous domain.’'=>* The
calculus shows that the basic Poisson distribution arises as the signature of a simple nondiagonalizable
dynamic. More to the point, we derive the Poisson distribution directly, without requiring the limit
of the discrete-time binomial distribution, as conventionally done.?

Consider all possible counts, up to some arbitrarily large integer N. The dynamics among these
first N + 1 counter states constitute what can be called the truncated Poisson dynamic. We recover the
full Poisson distribution as N — co. A Markov chain for the truncated Poisson dynamic is shown in
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FIG. 1. Explicit Markov-chain representation of the continuous-time truncated Poisson dynamic, giving interstate transition
rates r among the first N + 1 counter-states. (State self-transition rates — r are not depicted.) Taking the limit of N — oo recovers
the full Poisson counting distribution. It can either be time-homogeneous (transition-rate parameter r is time-independent) or
time-inhomogeneous (parameter r is time-dependent).

Fig. 1. The corresponding rate matrix G, for any arbitrarily large truncation N of the possible count,
is:
-r r

-r r
-r
where Gj; is the rate of transitioning to state (count) j given that the system is in state (count) i. Elements
not on either the main diagonal or first superdiagonal are zero. This can be rewritten succinctly
as:
G=-rl+rDy,

where [ is the identity operator in N-dimensions and D is the upshift-by-1 matrix in N-dimensions,
with zeros everywhere, except 1s along the first superdiagonal. Let us also define the upshift-by-m
matrix D,, with zeros everywhere except 1s along the m™ superdiagonal, such that D,, =D7" and
D}, = Dy,.,, with Dy = I. Operationally, if (d,| is the probability distribution over counter states that
is peaked solely at state £, then (d¢1D,;, = (I ¢4ml.

For any arbitrarily large N, G’s eigenvalues are given by det(G — M) = (—r — A =0, from which
we see that its spectrum is the singleton: Ag = {—r}. Moreover, since it has algebraic multiplicity
a_, =N + 1 and geometric multiplicity g_, = 1, the index of the —r eigenvalue is v_, = N + 1. Since
—r is the only eigenvalue, and all projection operators must sum to the identity, we must have the
eigenprojection: G_, = I. The lesson is that the Poisson point process is highly nondiagonalizable.

)N+1

1. Homogeneous Poisson processes

When the transition rate r between counter states is constant in time, the net counter state-to-state
transition operator from initial time O to later time ¢ is given simply by:

T(t) = €.

The functional calculus allows us to directly evaluate ¢’ for the Poisson nondiagonalizable
transition-rate operator G; we find:

T(t)=¢C
IPICXULEY ey
= G.(G - )" 2—56 ——dz
reAg m=0 BN S
N
1 dm
—_ 1 m___ 1; i #4
_1\}1—120 Z [G+rD m! z11>n—1r dz™ ¢
m=0 —_———
(me=rt
sl Mot
= D" —
m!

m=0

)
rt)te"
=0 m.

Consider the orthonormality relation (0;10;) = 6; ; between counter states, where 16;) is repre-
sented by Os everywhere except for a 1 at counter-state j. It effectively measures the occupation



065305-24 P. M. Riechers and J. P. Crutchfield AIP Advances 8, 065305 (2018)

probability of counter-state j. Employing the result for 7'(¢r), we find the simple consequence
that:
( )n —rt
(GolT(1)]6,) = = Oml T(O)|6msn)-
That is, the probability that the counter is 1ncremented by n in a time interval ¢ is independent of the
initial count and given by: (rt)"e~"/n!.

Let us emphasize that these steps derived the Poisson distribution directly, rather than as the
typical limit of the binomial distribution. Our derivation depended critically on spectral manipulations
of a highly nondiagonalizable operator. Moreover, our result for the transition dynamic 7'(¢) allows
a direct analysis of how distributions over counts evolve in time, as would be necessary, say, in a
Bayesian setting with unknown prior count. This type of calculus can immediately be applied to the
analysis of more sophisticated processes, for which we can generally expect nondiagonalizability to
play an important functional role.

2. Inhomogeneous Poisson processes

Let us now generalize to time-inhomogeneous Poisson processes, where the transition rate r
between count events is instantaneously uniform, but varies in time as r(¢). Conveniently, the asso-
ciated rate matrices at different times commute with each other. Specifically, with G, = —al + aD,
and G, = —bl + bD, we see that:

[Ga, Gp1=0
Therefore, the net counter state-to-state transition operator from time ¢ to time #; is given by:
' 'f
/ G(1) dr ( / 1) dt)(—l+D|)
Tto y=e » = e\ — e<r>(AI)(—I+D1) — e(Al)Gu), (45)

where At = t; — 1 is the time elapsed and:

iy
<r>=$/ r(t) dt

0

is the average rate during that time. Given Eq. (45), the functional calculus proceeds just as in the
time-homogeneous case to give the analogous net transition dynamic:
(<r>At)’" o
(P Z Dy, :
m=0

The probability that the count is incremented by n during the time interval Az follows directly:

1 =(r)At
<6m|Tt0,tf |6m+n> - %

With relative ease, our calculus allowed us to derive an important result for stochastic process
theory that is nontrivial to derive by other means. Perhaps surprisingly, we see that the probability
distribution over final counts induced by any rate trajectory r(¢) is the same as if the transition rate
were held fixed at mean (r) throughout the duration. Moreover, we can directly analyze the net
evolution of distributions over counts using the derived transition operator Ty, ;,

Note that the nondiagonalizability of the Poisson dynamic is robust in a physical sense. That is,
even varying the rate parameter in time in an erratic way, the inherent structure of counting imposes
a fundamental nondiagonalizable nature. That nondiagonalizability can be robust in a physical sense
is significant, since one might otherwise be tempted to argue that nondiagonalizability is extremely
fragile due to numerical perturbations within any matrix representation of the operator. This is simply
not the case since such perturbations are physically forbidden. Rather, this simple example challenges
us with the fact that some processes, even those familiar and widely used, are intrinsically nondiago-
nalizable. On the positive side, it appears that spectral methods can now be applied to analyze them.
And, this will be particularly important in more complex, memoryful processes,”>>® including the
hidden semi-Markov processes> !> that are, roughly speaking, the cross-product of hidden finite-state
Markov chains and renewal processes.
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D. Stochastic thermodynamics

The previous simple examples started to demonstrate the spectral methods of the functional
calculus. Next, we show a novel application of the meromorphic functional calculus to envi-
ronmentally driven mesoscopic dynamical systems, selected to give a new set of results within
nonequilibrium thermodynamics. In particular, we analyze functions of singular transition-rate
operators. Notably, we show that the Drazin inverse arises naturally in the general solution of
Green—Kubo relations. We mention that it also arises when analyzing moments of the excess heat
produced in the driven transitions atop either equilibrium steady states or nonequilibrium steady
states.?®

1. Dynamics in independent eigenspaces

An important feature of the functional calculus is its ability to address particular eigenspaces
independently when necessary. This feature is often taken for granted in the case of normal operators;
say, in physical dynamical systems when analyzing stationary distributions or dominant decay modes.
Consider a singular operator £ that is not necessarily normal and not necessarily diagonalizable and
evaluate the simple yet ubiquitous integral f; ¢'X dt. Via the meromorphic functional calculus we

find:
T v—1 / etz dt
e'Fdr = c mL.SE e
/0 Z Z b i e (z — A+

}\,EA[/ m=0
vo—1 1,7z
77 (e -1
(¥ 50m49§ e Dy
(m:O 2ni Co Zm+1 )
-1
vy | Z71 ( e7i — 1)
+ Z Z ‘C)"mﬁ (Z — )\‘)m+1 dz
AeAL\O m=0 G
Vo—l
_ 7 D(, 7L
=(D &iLom) + LP (e -1), (46)
m=0
where £7 is the Drazin inverse of L, discussed earlier.

The pole—pole interaction (z~! with z7"~!) at z = 0 distinguished the 0-eigenspace in the calcu-
lations and required the meromorphic functional calculus for direct analysis. The given solution to
this integral will be useful in the following.

Next, we consider the case where L is the transition-rate operator among the states of a
structured stochastic dynamical system. This leads to several novel consequence within stochastic
thermodynamics.

2. Green—Kubo relations

Let us reconsider the above integral in the case when the singular operator £L—Ilet us call it
G—is a transition-rate operator that exhibits a single stationary distribution. By the spectral mapping
In A of the eigenvalue 1 € A ¢ addressed in the Perron—Frobenius theorem, G’s zero eigenmode is
diagonalizable. And, by assuming a single attracting stationary distribution, the zero eigenvalue has
algebraic multiplicity ag = 1. Equation (46) then simplifies to:

/ ¢'% dr =706)0¢| + G” (e - 1). 47
0

Since G is a transition-rate operator, the above integral corresponds to integrated time evolution.
The Drazin inverse G” concentrates on the transient contribution beyond the persistent stationary
background. In Eq. (47), the subscript within the left and right eigenvectors explicitly links the
eigenvectors to the operator G, to reduce ambiguity. Specifically, the projector 106){0gl maps any
distribution to the stationary distribution.

Green—Kubo-type relations®>®! connect the out-of-steady-state transport coefficients to the
time integral of steady-state autocorrelation functions. They are thus very useful for understanding
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out-of-steady-state dissipation due to steady-state fluctuations. (Steady state here refers to either
equilibrium or nonequilibrium steady state.) Specifically, the Green—Kubo relation for a transport
coefficient, « say, is typically of the form:

K= /0 (AOA®))s 5. — (A)2g) dt,

where A(0) and A(#) are some observable of the stationary stochastic dynamical system at time 0
and time 7, respectively, and the subscript (-)ss. emphasizes that the expectation value is to be taken
according to the steady-state distribution.
Using:
(AOAWD)ss. = r(106)(061A €“A) = (0GIA e'°A|0G),
the transport coefficient « can be written more explicitly in terms of the relevant transition-rate
operator G for the stochastic dynamics:

k= lim / (0G1A €'°A|06) dt — T(0G|A|06)?
0

T—00
.
= lim (OclA( / ¢ dt)A|0c;> - 7(06|A|06)?
T—00 O
= lim (0g|A GP (¢7¢ = 1)A|0G)
T—00

=—(AGPA)s. (48)

Thus, we learn that relations of Green—Kubo form are direct signatures of the Drazin inverse of the
transition-rate operator for the stochastic dynamic.

The result of Eq. (48) holds quite generally. For example, if the steady state has some number of
periodic flows, the result of Eq. (48) remains valid. Alternatively, in the case of nonperiodic chaotic
flows—where G will be the logarithm of the Ruelle—Frobenius—Perron operator, as described later in
Sec. VI E 1—I104)(0gl still induces the average over the steady-state trajectories.

In the special case where the transition-rate operator is diagonalizable, —(A GPA); ;. is simply the
integrated contribution from a weighted sum of decaying exponentials. Transport coefficients then
have a solution of the simple form:

1
k== 3406lA GrAI0G). (49)
KEAG\O

Note that the minus sign keeps « positive since Re(h) < 0 for L € Ag \{0}. Also, recall that G’s
eigenvalues with nonzero imaginary part occur in complex-conjugate pairs and G; = G;.. Moreover,
if G;; is the classical transition-rate from state i to state j (to disambiguate from the transposed
possibility), then (Ol is the stationary distribution. (The latter is sometimes denoted (7| in the Markov
process literature.) And, 105) is a column vector of all ones (sometimes denoted 1)) which acts to
integrate contributions throughout the state space.

A relationship of the form of Eq. (48), between the Drazin inverse of a classical transition-rate
operator and a particular Green—Kubo relation was recently found in Ref. 62 for the friction tensor
for smoothly-driven transitions atop nonequilibrium steady states. Subsequently, a truncation of the
eigen-expansion of the form of Eq. (49) was recently used in a similar context to bound a universal
tradeoff between power, precision, and speed.%> Equation (48) shows that a fundamental relationship
between a physical property and a Drazin inverse is to be expected more generally whenever the
property can be related to integrated correlation.

Notably, if a Green—Kubo-like relation integrates a cross-correlation, say between A(¢) and B(¢)
rather than an autocorrelation, then we have only the slight modification:

/0 ((AO)B(1))s s ~(A)s §B)s.s.)di=~A GPB)ss.. (50)

The foregoing analysis bears on both classical and quantum dynamics. G may be a so-called
linear superoperator in the quantum regime;®* for example, the Lindblad superoperator®°® that
evolves density operators. A Liouville-space representation®” of the superoperator, though, exposes
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the superficiality of the distinction between superoperator and operator. At an abstract level, time
evolution can be discussed uniformly across subfields and reinterpretations of Eq. (50) will be found
in each associated physical theory.

Reference 26 presents additional constructive results that emphasize the ubiquity of integrated
correlation and Drazin inverses in the transitions between steady states,8 relevant to the fluctuations
within any physical dynamic. Overall, these results support the broader notion that dissipation depends
on the structure of correlation.

Frequency-dependent generalizations of integrated correlation have a corresponding general
solution. For example, the general solution to power spectra of a process generated by any countable-
state hidden Markov chain can be given in exact closed form using our methods. Those results will
be presented elsewhere.

E. Operators for chaotic dynamics

Since trajectories in state-space can be generated independently of each other, any nonlinear
dynamic corresponds to a linear operation on an infinite-dimensional vector-space of complex-valued
distributions (in the sense of generalized functions) over the original state-space. For example, the
well-known Lorenz ordinary differential equations®® are nonlinear over its three given state-space
variables—ux, y, and z. Nevertheless, the dynamic is linear in the infinite-dimensional vector space
D(R?) of distributions over R*. Although D(R?) is an unwieldy state-space, the dynamics there might
be well approximated by a finite truncation of its modes.

1. Ruelle-Frobenius—Perron and Koopman operators

The preceding operator formalism applies, in principle at least. The question, of course, is, Is it
practical and does it lead to constructive consequences? Let’s see. The right eigenvector is either [05)
orll7) with T =7 as the Ruelle-Frobenius—Perron transition operator.””’! Equivalently, it is also 7,
the stationary distribution, with support on attracting subsets of R* in the case of the Lorenz dynamic.
The corresponding left-eigenvector 1, either (Ogl or (171, is uniform over the space. Other modes of
the operator’s action, according to the eigenvalues and left and right eigenvectors and generalized
eigenvectors, capture the decay of arbitrary distributions on R>.

The meromorphic spectral methods developed above give a view of the Koopman operator and
Koopman modes of nominally nonlinear dynamical systems* that is complementary to the Ruelle—
Frobenius—Perron operator. The Koopman operator K is the adjoint—in the sense of vector spaces,
not inner product spaces—of the Ruelle-Frobenius—Perron operator T: effectively, the transpose
K = T7. Moreover, it has the same spectrum with only right and left swapping of the eigenvectors
and generalized eigenvectors.

The Ruelle-Frobenius—Perron operator 7T is usually associated with the evolution of probability
density, while the Koopman operator K is usually associated with the evolution of linear functionals
of probability density. The duality of perspectives is associative in nature: {f|(7"1pg)) corresponds to
the Ruelle—Frobenius—Perron perspective with T acting on the density p and ({f|T")lpg) corresponds
to the Koopman operator 7" = K acting on the observation function f. Allowing an observation vector
f =[fi1,f2, - - - fm] of linear functionals, and inspecting the most general form of K" given by Eq. (25)
together with the generalized eigenvector decomposition of the projection operators of Eq. (39),
yields the most general form of the dynamics in terms of Koopman modes. Each Koopman mode is
a length-m vector-valued functional of a Ruelle-Frobenius—Perron right eigenvector or generalized
eigenvector.

Both approaches suffer when their operators are defective. Given the meromorphic calculus’
ability to work around a wide class of such defects, adapting it to the Ruelle-Frobenius—Perron and
Koopman operators suggests that it may lift their decades-long restriction to only analyzing highly
idealized (e.g., hyperbolic) chaotic systems.

2. Eigenvalues from a time series

Let’s explore an additional benefit of this view of the Ruelle—Frobenius—Perron and Koopman
operators, by proposing a novel method to extract the eigenvalues of a nominally nonlinear dynamic.
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Let Oy (f, z) be (z~! times) the z-transform [Ref. 72, pp. 257-262] of a length-N sequence of 7-spaced
type-f observations of a dynamical system:

N
On(f, =2 Y ™ fIT" |po)
n=0

—Noeo (fII = T) ' po)

Wzl F | Timlpo)
reAr m=0 (re - )mH’
as N — oo for Izl = r > 1. Note that (fIT"lpp) is simply the f-observation of the system at time
nt, when the system started in state py. We see that this z-transform of observations automati-
cally induces the resolvent of the hidden linear dynamic. If the process is continuous-time, then
T = ¢" ¢ implies Ay = e™¢, so that the eigenvalues should shift along the unit circle if 7 changes;
but the eigenvalues should be invariant to 7 in the appropriate 7-dependent conformal mapping of
the inside of the unit circle of the complex plane to the left half complex plane. Specifically, for
any experimentally accessible choice of inter-measurement temporal spacing 7, the fundamental
set of continuous-time eigenvalues Ag can be obtained from Ag = % In A7, where each Ay € A7 is
extrapolated from c/(re’® — A7) curves fit to Oy (f, re'®) for ¢ € C, large N, and fixed r.

The square magnitude of Oy (f, z) is related to the power spectrum generated by f-type observa-
tions of the system. Indeed, the power spectrum generated by any type of observation of a nominally
nonlinear system is a direct fingerprint of the eigenspectrum and resolvent of the hidden linear
dynamic. This suggests many opportunities for inferring eigenvalues and projection operators from
frequency-domain transformations of a time series.

VIl. CONCLUSION

The original, abstract spectral theory of normal operators rose to central importance when,
in the early development of quantum mechanics, the eigenvalues of Hermitian operators were
detected experimentally in the optical spectra of energetic transitions of excited electrons. We
extended this powerful theory by introducing the meromorphic functional calculus and unraveling
the consequences of both the holomorphic and meromorphic functional calculi in terms of spec-
tral projection operators and their associated left and right generalized eigenvectors. The result is
a tractable spectral theory of nonnormal operators. Our straightforward examples suggest that the
spectral properties of these general operators should also be experimentally accessible in the behavior
of complex—open, strongly interacting—systems. We see a direct parallel with the success of the
original spectral theory of normal operators as it made accessible the phenomena of the quantum
mechanics of closed systems. This turns on nondiagonalizability and appreciating how ubiquitous
it is.

Nondiagonalizability has consequences for settings as simple as counting, as shown in Sec. VI C.
Moreover, there we found that nondiagonalizability can be robust. The Drazin inverse, the
negative-one power in the meromorphic functional calculus, is quite common in the nonequi-
librium thermodynamics of open systems, as we showed in Sec. VI D. And in related work,??
we found that the power spectrum of a stochastic process is a direct signature of the spec-
trum and projection operators of the process’ hidden linear dynamic, with nondiagonalizable
subspaces yielding qualitatively distinct line profiles. This shows that the spectral character of
nonnormal and nondiagonalizable operators manifests itself physically and measurably. Our new
formulae for spectral projection operators and the orthonormality relation among left and right
generalized eigenvectors will thus likely find use in the analytic treatment of complex physical
systems.

From the perspective of functional calculus, nonunitary time evolution, open systems, and non-
Hermitian generators are closely related concepts since they all rely on the manipulation of nonnormal
operators. Moreover, each domain is gaining traction. Nonnormal operators have recently drawn
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attention, from the nonequilibrium thermodynamics of nanoscale systems’? to large-scale cosmo-
logical evolution.”* In another arena entirely, complex directed networks’> correspond to nonnormal
and not-necessarily-diagonalizable weighted digraphs. There are even hints that nondiagonalizable
network structures can be optimal for implementing certain dynamical functionalities.”® The opportu-
nity here should be contrasted with the well established field of spectral graph theory’” that typically
considers consequences of the spectral theorem for normal operators applied to the symmetric (and
thus normal) adjacency matrices and Laplacian matrices. It seems that the meromorphic calculus and
its generalized spectral theory will enable a spectral weighted digraph theory beyond the purview of
current spectral graph theory.

Even if the underlying dynamic is diagonalizable, particular questions or particular choices of
observable often induce a nondiagonalizable hidden linear dynamic. The examples already showed
this arising from the simple imposition of counting or assuming a Poissonian dynamic. In more
sophisticated examples, we recently found nondiagonalizable dynamic structures in quantum memory
reduction,?* classical complexity measures,' and prediction.???3

Our goal has been to develop tractable, exact analytical techniques for nondiagonalizable systems.
We did not discuss numerical implementation of algorithms that naturally accompany its practical
application. Nevertheless, the theory does suggest new algorithms—for the Drazin inverse, projection
operators, power spectra, and more. Guided by the meromorphic calculus, such algorithms can be
made robust despite the common knowledge that numerics with nondiagonalizable matrices are
sensitive in certain ways.

The extended spectral theory we have drawn out of the holomorphic and meromorphic func-
tional calculi complement efforts to address nondiagonalizability, e.g., via pseudospectra.’®”® It also
extends and simplifies previously known results, especially as developed by Dunford.'6 Just as the
spectral theorem for normal operators enabled much theoretical progress in physics, we hope that our
generalized and tractable analytic framework yields rigorous understanding for much broader classes
of complex system. Importantly, the analytic framework should enable a new theory of complex
systems beyond the limited purview of numerical investigations.

While the infinite-dimensional theory is in principle readily obtained from the present framework,
special care must be taken to guarantee a similar level of tractability and generality. Nevertheless,
even the finite-dimensional theory enables a new level of tractability for analyzing not-necessarily-
diagonalizable systems, including nonnormal dynamics. Future work will take full advantage of
the operator theory, with more emphasis on infinite-dimensional systems and continuous spectra.
Another direction forward is to develop creation and annihilation operators within nondiagonalizable
dynamics. In the study of complex stochastic information processing, for example, this would allow
analytic study of infinite-memory processes generated by, say, stochastic pushdown and counter
automata.>®80-82 In a physical context, such operators may aid in the study of open quantum field
theories. One might finally speculate that the Drazin inverse will help tame the divergences that arise
there.
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