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Impossibility of achieving Landauer’s bound for almost every quantum state
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The thermodynamic cost of resetting an arbitrary initial state to a particular desired state is lower bounded by
Landauer’s bound. However, here we demonstrate that this lower bound is necessarily unachievable for every
initial state (except possibly the single minimally dissipative input) for any reliable reset mechanism. Since local
heating threatens rapid decoherence, this issue is of substantial importance beyond mere energy efficiency. For
the case of qubit reset, we find the minimally dissipative state analytically for any reliable reset protocol, in
terms of the entropy-flow vector introduced here. This allows us to verify a recent theorem about initial-state
dependence of entropy production for any finite-time transformation, as it pertains to quantum state preparation.
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I. INTRODUCTION

Whether initializing a quantum computer or a quantum
experiment, a desired quantum state must be prepared. The
thermodynamic cost of erasing the pre-existing state and re-
placing it with a newly prepared state is typically associated
with Landauer’s bound: the accepted exchange rate between
information and energy [1,2]. Indeed, Landauer’s bound is
one of the key results tying quantum information to physical
predictions via the universality of thermodynamics. In the
simplest quantum version of this bound, the expected heat Q
released to the environment must exceed the reduction in von
Neumann entropy of the system (multiplied by the thermal
energy kBT of the environment) [3,4]. It is generally accepted
that in the limit of quasistatically slow transformations, the
expected heat can approach Landauer’s lower bound [5,6].

However, in the following, we demonstrate that no reliable
protocol for preparing a quantum state can achieve Landauer’s
bound for any more than, at best, one of infinitely many
possible inputs to the preparation device. In particular, when
resetting a quantum state via any reliable mechanism, we find
that there is only a single input state α0 leading to minimal en-
tropy production (which is generically a mixed state) among
the uncountably infinite number of possible input states.

Suppose, for example, that a quantum state is reset in finite
time in an environment of ambient temperature T , and assume
the validity of the second law of thermodynamics. Then, even
if the reset mechanism approaches Landauer’s bound for the
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minimally dissipative input, the reset will necessarily produce
more than Landauer’s required heat QLandauer for every other
input. In particular, for any input ρ0 to any reliable erasure
protocol

Q − QLandauer � kBT D[ρ0‖α0], (1)

where D[ρ0‖α0] is the quantum relative entropy between the
actual input ρ0 and the minimally dissipative input α0.

In the following, we demonstrate the predictive power of
this result and unravel its important implications for quantum
state preparation. To get there, Sec. II first reviews and further
develops the relevant theory, leading to a generalization of
Eq. (1), which applies to finite-time transformations of any
physical system placed in any environment. Section III points
out the immediate consequences. To address the thermody-
namic cost of initializing any quantum computing algorithm,
we then develop further analytic results for qubit erasure in
Sec. IV. We find the exact minimally dissipative quantum
state analytically for any reliable qubit-reset protocol, in terms
of the entropy-flow vector introduced here. The entropy-flow
vector, in turn, is found algebraically for any qubit trans-
formation protocol, via experimentally obtained heats, from
any four linearly independent initial states. In Sec. V, we
demonstrate our results with explicit physical models for qubit
erasure. This allows us to verify the recent theoretical results
for initial-state dependence of entropy production [Eq. (9)],
developed for any finite-time transformation in Ref. [7], as
applied to quantum state preparation. Finally, we examine the
thermodynamic penalty of decoherence, and show that this
bounded contribution from decoherence is often overshad-
owed by the more dire penalty imposed by the purity of the
minimally dissipative input state.

The unachievability of Landauer’s bound has been ex-
plored from several other directions before. For example, the
authors of Ref. [4] showed that finite-dimensional quantum
baths can never exactly achieve Landauer’s bound, although
Landauer’s bound can be approached in the limit of large
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baths. In addition, in the single-shot regime, the independent-
and-identically-distributed (IID) limit of many coexisting
copies of the system is necessary to reliably approach Lan-
dauer’s bound in a single shot (rather than just on average)
[8,9]. However, our result is even more severe than these
previously acknowledged limitations of Landauer’s bound.
Even in the case of large baths, and when concerned with only
average quantities, we find that Landauer’s bound still cannot
be approached by more than a single initial quantum state for
any reliable implementation of reset.

II. THERMODYNAMICS OF QUANTUM RESET

A. Background

Nonequilibrium thermodynamics is largely a theory of
entropy production. For example, the second law of thermo-
dynamics states that entropy production is expected to be
nonnegative for any thermodynamic process, from any initial
state ρ0:

�ρ0 � 0. (2)

The validity of the second law requires that the system is ini-
tially uncorrelated with the environment, and each part of the
environment is initially uncorrelated and in local equilibrium
[4,7,10]. This means that the initial joint state of system and
environment is a product state ρ tot

0 = ρ0 ⊗ ρenv
0 with ρenv

0 =⊗
b∈B π

(b)
0 , where π

(b)
0 is a state of local equilibrium for bath

b. However, the correlation between the system and baths,
as well as the correlation among baths, generically builds up
over time, while the baths also generically depart from local
equilibrium [11].

The thermodynamic process can be made explicit through
the control protocol x0:τ which implies the trajectory of the
joint system–baths Hamiltonian H tot

xt
from time 0 through τ .

The control protocol induces a net time evolution Ux0:τ of the
system–baths supersystem, so that the system’s state at the end
of the transformation is

ρτ = �(ρ0) = trenv
(
Ux0:τ ρ0 ⊗ ρenv

0 U†
x0:τ

)
. (3)

In general, xt may consist of any number of parameters.
Different thermodynamic processes correspond to different
control protocols.

In the quantum setting, the expected entropy production
(from time 0 to τ ) is the expected entropy flow �ρ0 to the
environment beyond any compensating reduction in the von
Neumann entropy of the system S(ρt ) = −tr(ρt ln ρt ):

�ρ0 = �ρ0 + kBS(ρτ ) − kBS(ρ0), (4)

where kB is Boltzmann’s constant.
Entropy flow has been central to thermodynamics since the

discoveries of Clausius, when he found that dividing heat by
the absolute temperature of each bath allowed a precise state-
ment of the second law of thermodynamics [12]. Dividing heat
by the temperature of the bath gives an Aequivalenzwerth or
“equivalence-value” of the usefulness of that heat for affecting
change [12]. More generally, the flow of energy, particles,
volume, and so on, all have an equivalence-value to affect
change; and entropy flow sums up the equivalence-value of
environmental resources consumed during a transformation.

For general thermodynamic transformations, we find that
the expected entropy flow can be represented as

�ρ0
:= −kB

∫ τ

0
tr
(
ρ̇ env

t ln πenv
t

)
dt, (5)

where ρenv
t is the reduced state of the environment at time t .

The reference state πenv
t always represents the environment

as a set of thermodynamic baths B in local equilibrium:
πenv

t = ⊗
b∈B π

(b)
t . To encompass a very broad class of physi-

cal scenarios, we allow the reference state to depend on time.
However, we assume in the following that the reference state
is independent of the initial state of the system.

For example, if each bath has a time-independent grand
canonical reference state with temperature T (b) and chemical
potentials {μ(b,�)}�, then the expected entropy flow takes on
the familiar form [10,11,13,14]

�ρ0 =
∑
b∈B

Q(b)

T (b)
− 1

T (b)

∑
�

μ(b,�)� 〈N (b,�)〉 , (6)

where the heat Q(b) = �tr(ρ (b)
t H (b) ) is the expected en-

ergy change of bath b over the course of the process and
� 〈N (b,�)〉 = �tr(ρ (b)

t N (b,�) ) is the expected change in the
bath’s number of �-type particles. Here ρ

(b)
t is the reduced

state of bath b at time t . Equation (6) was used to explore
entropy production even in the case of arbitrarily small baths,
by fixing the reference state via the initial temperatures and
chemical potentials [10,11].

Equations (2) and (4) together immediately imply a very
general form of Landauer’s bound

�ρ0 � kBS(ρ0) − kBS(ρτ ). (7)

In other words, whenever the second law of thermodynamics
is valid, the change in the system’s entropy bounds the ex-
pected entropy flow.

If there is a single thermal bath at temperature T , then the
expected entropy flow is simply

�ρ0 = Q/T,

where Q denotes the expected heat flow to the bath, i.e., its
change in energy. Landauer’s bound for the heat released
to the environment during reset is then Q � QLandauer with
QLandauer := kBT [S(ρ0) − S(ρτ )]. Paradigmatic “bit erasure”
takes a completely mixed state ρ0 = I/2 to a pure state ρτ =
|0〉〈0|, yielding the S(ρ0) − S(ρτ ) = ln 2 that leads to the
most familiar form of Landauer’s bound

Q � kBT ln 2

for the heat required to erase either a bit or a qubit.
Entropy production quantifies the heat (or entropy flow,

more generally) produced beyond Landauer’s bound. Positive
entropy production implies thermodynamic irreversibility: an
effectively irreversible loss of thermodynamic resources. The
cause of this effective irreversibility is easier to understand
when we decompose the expected entropy production into
a collection of nonnegative contributions, as in Ref. [10].
The decomposition shows that the nonnegativity of entropy
production can be attributed to both (1) the growth of to-
tal correlation among the system and all baths and (2) the
nonequilibrium addition to free energy built up in each bath.
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Both of these structural features are assumed to be too difficult
to practically leverage, which is the reason for the effective
loss of useful resources.

For any thermodynamic process that implements a nonuni-
tary transformation of the system, the expected entropy
production from time 0 through τ will depend on the initial
state of the system. It is useful to consider any minimally
dissipative state

α0 ∈ argminρ0
�ρ0 . (8)

In Ref. [7], we recently established that the expected entropy
production (from any initial state ρ0 that acts on the support
of α0) is quantified by

�ρ0 − �α0 = kBD[ρ0‖α0] − kBD[ρτ‖ατ ], (9)

where D[ρ‖α] = tr(ρ ln ρ) − tr(ρ ln α) is the quantum rel-
ative entropy. This generalizes the classical result found
in Ref. [15], where the quantum relative entropy between
quantum states reduces to the Kullback-Leibler divergence
between classical distributions. Appendix A further extends
the generality of this result, proving that it remains valid even
when the environmental reference state πenv

t is time depen-
dent. Equation (9) is very general and is valid in the presence
of arbitrary initial environments, even when the second law
is not. (The examples to follow, however, all fall within the
purview of the second law.)

B. Consequences of reliability and precision

In the following, we focus on reliable reset protocols,
which induce the net transformation

�(ρ0) ≈ rτ (10)

to the input-independent state rτ . Reliability can be quantified
by the maximal trace distance between the final and desired
state, ε = supρ0

1
2‖�(ρ0) − rτ‖1, which should be very nearly

zero. The following results therefore apply not only to erasing
a qubit but also to many other important scenarios, including
the following: (1) to initialize any number of registers of a
quantum computer; (2) to produce a maximally mixed state;
(3) to achieve equilibrium; (4) to establish a nonequilibrium
steady state; and (5) to prepare a special state like a Bell state.

In the ε → 0 limit of high-fidelity reset, ρτ and ατ both
approach rτ , and so D[ρτ‖ατ ] → 0 when reliably resetting to
a mixed state [7]. In this limit of reliable reset, the difference
in expected entropy production from any initial density matrix
ρ0 defined on the support of α0 is then exactly proportional to
the initial distinguishability between ρ0 and α0, as quantified
by the quantum relative entropy

�ρ0 = �α0 + kBD[ρ0‖α0]. (11)

As the desired final state approaches a pure state, or a
state with limited support, Eq. (11) remains valid provided
that the final states all converge with sufficient precision. In
particular, we can quantify the precision of final states via
half the maximal trace distance between final states: ε′ =
supρ0,ρ

′
0

1
4‖�(ρ0) − �(ρ ′

0)‖1. By the triangle inequality, reli-
ability guarantees precision: ε′ � ε. While it is always true
that 0 � D[ρτ‖ατ ] � D[ρ0‖α0], we adapt the theorems found
in Ref. [16] to derive a number of stricter bounds implied by

the precision and reliability of reset protocols. For example,
we find

D[ρτ‖ατ ] � 4ε′ ln

(
d

4ε′√s

)
� 4ε ln

(
d

4ε
√

s

)
,

where d is the dimension of the Hilbert space and s is ατ ’s
smallest eigenvalue. Appendix B provides yet much sharper
upper bounds. A useful lesson is that the final relative entropy
D[ρτ‖ατ ] goes to zero as the minimally dissipative state ap-
proaches a pure state, provided that ε′ � s, i.e., provided that
the final states converge faster than they purify. This condition
is naturally fulfilled for typical protocols that reliably reset to
a pure state. In the limit of perfect reset (ε = 0), Eq. (11) is
always exactly satisfied.

In the following, we will demonstrate the strong valid-
ity and power of Eq. (11) via several explicit examples. In
the first example, given in Sec. V A (where the system is
thrown away and replaced with a nearly pure state from an
effectively cold bath) the final state is precisely the initial
bath state. As a consequence, ε′ = 0 for this example, and
Eq. (11) is fulfilled exactly. Our later examples, given in
Sec. V B, investigate RESET via time-dependent Lindbladian
dynamics. Lindbladian dynamics imply an exponential decay
of distinction among states, as all states converge towards
the instantaneous steady state of the Lindblad operator. Ac-
cordingly, precision improves exponentially with time for any
Lindbladian dynamics, i.e., ε′ decays exponentially towards
0 with time. This makes Eq. (11) an excellent approximation
for RESET via Lindbladian dynamics, whenever the protocol
is run for long enough to ensure reliable reset towards the
desired state.

The next section explicates several important implications
of Eq. (11). Subsequently, Sec. IV shows how the minimally
dissipative state can be found from the entropy-flow vector,
which will be introduced shortly. This transforms Eq. (11)
from a neat theoretical result into a powerful predictive tool
for real physical systems.

III. OBSERVATIONS

Our first observation is that there is always a unique min-
imally dissipative initial state for any reliable reset protocol.
If α0 has full support, this follows from Eq. (11) and the
fact that the quantum relative entropy D[ρ0‖α0] is positive
unless ρ0 = α0. In fact, Appendix C guarantees that α0 has
full support on the domain of states to be reset, which proves
the observation.

The dissipation from most inputs grows drastically as a re-
set protocol is adjusted to bring the minimally dissipative state
closer to a pure state. Indeed, via a well-known sensitivity of
the relative entropy, the dissipation diverges for most inputs as
α0 approaches a pure state. This will be demonstrated in the
examples of Sec. V.

To avoid this divergent dissipation, it may be desirable to
design a reset protocol to be thermodynamically optimal for
the completely mixed state α0 = I/d of the d-dimensional
quantum system. What is the heat required to reliably reset
any qudit to a pure state, when the system is coupled to a
single thermal bath at temperature T and �I/d = 0? From
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Eq. (11), we observe that the heat in this case is

Q = kBT D[ρ0‖I/d] + kBT S(ρ0) = kBT ln d,

independent of the initial state. Appendix E describes a
protocol that makes the fully mixed state the minimally dissi-
pative state. While kBT ln d may be reminiscent of Landauer’s
bound, it should be noted that this exceeds Landauer’s bound
of kBT S(ρ0) by kBT D[ρ0‖I/d]. If the input is not completely
mixed, then less heat is possible by designing the reset pro-
tocol to be optimal for the true input. However, when the
true input is unknown, or if a single protocol is part of a
prefabricated design meant to reset states of diverse origin,
this may be an acceptable price for ignorance.

Further general insight can be gained by decomposing the
quantum relative entropy into contributions from classical rel-
ative entropy and quantum coherence. The classical relative
entropy involves two classical probability distributions Q0

and P0 over a complete orthonormal set of α0’s right eigen-
states. Specifically, Q0(s) = 〈s|α0|s〉 is the probability that α0

would be found in the eigenstate |s〉 if the state is projectively
measured in its eigenbasis. Similarly, P0(s) = 〈s|ρ0|s〉 is the
probability that ρ0 would appear to be in the state |s〉 if
measured in the eigenbasis of α0.

It is useful to note that the quantum relative entropy can
always be decomposed as [7]

D[ρ0‖α0] = DKL[P0‖Q0] + Cα0 (ρ0). (12)

Above, DKL[P0‖Q0] is the classical relative entropy, also
known as the Kullback-Leibler divergence, which is always
nonnegative. Finally, Cα0 (ρ0) is the relative entropy of co-
herence [17], which quantifies the coherence of ρ0 on the
eigenbasis of α0.1 The relative entropy of coherence is also
nonnegative.

The nonnegativity of the two terms in this decomposition
leads to our third observation, that any initial coherence on
the minimally dissipative eigenbasis directly results in extra
dissipation during state reset, compared to the same state
decohered in that basis.

It is worth emphasizing that coherence relative to the min-
imally dissipative eigenbasis is the relevant coherent quantity
leading to dissipation for general thermodynamic transfor-
mations. Crucially, this minimally dissipative eigenbasis is
generally not the energy eigenbasis of the system. Neverthe-
less, the two bases coincide for simple thermal operations
like relaxation processes, as explored in many recent studies
including Refs. [18–20].

At the same time, we note that the the relative entropy of
coherence is always upper bounded by a constant, ln d , for
a d-dimensional system. Hence, for any process with very
large entropy production �ρ0 − �α0 � kB ln d , the classical
limit (i.e., ignoring the possibility of coherence) will suffice
to explain the bulk of the dissipation. In such cases, the
Kullback-Leibler divergence is responsible for most of the
dissipation, with coherence playing a relatively minor role.

1The relative entropy of coherence can be written as Cα0 (ρ0) =
S(P0) − S(ρ0), where P0 = ∑

s∈Eα0
P0(s) |s〉〈s| is the initial state

decohered in α0’s eigenbasis Eα0 .

With the general theoretical framework laid out, we can
now circle back to our opening comments. Whenever the
second law is valid, the nonnegativity of �α0 together with
Eq. (11) imply that

�ρ0 � kBD[ρ0‖α0] (13)

for any reliable reset protocol. This generalization of Eq. (1)
is necessary when heat does not capture all aspects of entropy
flow. It should be noted, however, that Eq. (11) is much more
predictive than Eq. (13) since the former is an equality in the
limit of reliable reset.

In the next section, we introduce the entropy-flow vector,
and identify the minimally dissipative state for any process
that reliably resets a qubit. This then allows us to draw further
lessons from the investigation of several examples.

IV. MINIMALLY DISSIPATIVE STATE
FOR QUBIT ERASURE

Landauer’s bound is typically associated with reset of a bit
or qubit to a particular computational state 0. In the quantum
setting, this corresponds to resetting the quantum state to a
pure state rτ = |0〉〈0|.

The instantaneous state of a qubit can be fully described
by its Bloch vector �a = (ax, ay, az ) ∈ {�r ∈ R3 : |�r| � 1} via
ρt = 1

2 [I + �a(t ) · �σ ], where �σ = (σx, σy, σz ) is the vector of
Pauli matrices.

A. Entropy-flow vector

Appendix D shows that there is an input-independent
entropy-flow vector �φ = (φx, φy, φz ) for each control proto-
col such that

�ρ0 = �I/2 + 1
2 �a · �φ (14)

for any initial state ρ0 = I/2 + 1
2 �a · �σ . Conveniently, the ex-

pected entropy flow from the completely mixed state �I/2

together with the entropy-flow vector �φ can both be inferred
via simple linear algebra when the expected entropy flow
is measured from any four experimentally accessible initial
states.

Suppose we have access to any four linearly indepen-
dent initial density matrices ρ

(n)
0 with Bloch vectors �a(n), and

their resultant expected entropy flow �
ρ

(n)
0

, for n ∈ {1, 2, 3, 4}.
Almost any four initial density matrices chosen at random
would suffice since it is unlikely that a random density matrix
will lie in the subspace spanned by the previously chosen
density matrices. As a concrete, and likely useful example, we
could choose the four initial states to be the completely mixed
state I/2, together with the pure x̂, ŷ, and ẑ states: (I + σx )/2,
(I + σy)/2, and (I + σz )/2, respectively.

From Eq. (14), we have⎡
⎢⎢⎢⎢⎣

2 a(1)
x a(1)

y a(1)
z

2 a(2)
x a(2)

y a(2)
z

2 a(3)
x a(3)

y a(3)
z

2 a(4)
x a(4)

y a(4)
z

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
≡A

⎡
⎢⎢⎢⎣

�I/2

φx

φy

φz

⎤
⎥⎥⎥⎦ = 2

⎡
⎢⎢⎢⎢⎣

�
ρ

(1)
0

�
ρ

(2)
0

�
ρ

(3)
0

�
ρ

(4)
0

⎤
⎥⎥⎥⎥⎦. (15)
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From Eq. (15), we can obtain an expression for the entropy-
flow vector

[
�I/2

�φ

]
= 2 A−1

⎡
⎢⎢⎢⎢⎣

�
ρ

(1)
0

�
ρ

(2)
0

�
ρ

(3)
0

�
ρ

(4)
0

⎤
⎥⎥⎥⎥⎦. (16)

Note that the invertibility of A has been assured by the linear
independence of the four initial states.

Once �I/2 and �φ have been obtained via Eq. (16), the
entropy flow can be obtained analytically (for any thermo-
dynamic process acting on a qubit) for any initial state via
Eq. (14). For any reliable erasure protocol, this also leads to
an analytic expression for entropy production from any initial
state.

B. Analytic entropy production

For any reliable reset protocol, the entropy of the final state
is independent of the initial state. In this low-ε limit where
S(ρτ ) = S(rτ ), Eq. (4) tells us that entropy production can be
expressed as

�ρ0 = �ρ0 + kBS(rτ ) − kBS(ρ0). (17)

When resetting to a pure state, the entropy of the final state
vanishes and Eq. (17) further simplifies to

�ρ0 = �ρ0 − kBS(ρ0). (18)

Moreover, the entropy of a qubit only depends on its purity,
via the length of its Bloch vector a = |�a|. This is because
a qubit state always spectrally decomposes into (1 + a)/2
times the pure state in the direction of the Bloch vector, plus
(1 − a)/2 times the pure state in the antipodal direction on
the Bloch sphere. For an initial state with Bloch vector �a, the
initial entropy is therefore

S(ρ0) = −1 + a

2
ln

(
1 + a

2

)
− 1 − a

2
ln

(
1 − a

2

)
. (19)

Equations (14), (18), and (19) thus yield an analytic ex-
pression for entropy production of any reliable qubit erasure
protocol via (1) the Bloch vector �a of the initial state, (2) the
expected entropy flow �I/2 from the completely mixed state,
and (3) the entropy-flow vector �φ induced by the protocol.

C. Minimally dissipative state

We can now minimize Eq. (17) to find the minimally dissi-
pative initial state α0 analytically in terms of the entropy-flow
vector for any reliable reset protocol.

We will parametrize a generic initial density matrix ρ0 via
its Bloch vector �a = (ax, ay, az ) with magnitude a = (a2

x +
a2

y + a2
z )1/2. The minimally dissipative initial state α0 has the

Bloch vector �a∗. Differentiating the entropy production with
respect to changes in the Bloch vector, we find

∂�ρ0

∂ax
= ax

2a
ln

(
1 + a

1 − a

)
+ 1

2
φx (20)

and similar expressions when we take the derivative with
respect to ay or az. Since α0 is a unique nonpure state, the

condition of minimization requires that

∂�ρ0

∂ax

∣∣∣
ax=a∗

x

= 0 (21)

and so on for a∗
y and a∗

z . This immediately leads to conditions
like

a∗
x = −φx

a∗

ln
(

1+a∗
1−a∗

) . (22)

Combining Eq. (22) with the corresponding expressions for
a∗

y and a∗
z according to (a∗2

x + a∗2
y + a∗2

z )1/2 = a∗ yields a
condition for a∗:

ln
(

1+a∗
1−a∗

) =
√

φ2
x + φ2

y + φ2
z = φ, (23)

which can be solved to obtain

a∗ = tanh(φ/2). (24)

Plugging this back into Eq. (22), we find that

�a∗ = − tanh(φ/2) φ̂, (25)

where φ̂ = �φ/φ. This gives the Bloch vector �a∗ of the
minimally dissipative initial state α0, analytically for any re-
liable reset protocol, in terms of the protocol’s entropy-flow
vector �φ.

Qualitatively, we can note from Eq. (25) that the minimally
dissipative Bloch vector �a∗ points in the opposite direction of
the entropy-flow vector �φ. This enables a reduction in heat
flow. As the magnitude of the entropy-flow vector φ grows
beyond two, the minimally dissipative Bloch vector converges
exponentially to the edge of the Bloch sphere. However, the
minimally dissipative initial state is never exactly pure for
any finite φ since entropy production balances entropy flow
against the growth in state uncertainty, and, evidently, a suf-
ficiently small reduction in initial-state certainty can always
outweigh the smaller potential reduction in entropy flow.

V. EXPLICIT RESET PROTOCOLS

A. First example: Reset via SWAP

It should be noted that our preceding results are very
generally applicable and are not limited to weak interactions
nor any of the other approximations that are required of the
common quantum master equations often employed in quan-
tum thermodynamics (although our results indeed apply there
also). To demonstrate our result in a setting of strong interac-
tions with an explicit finite bath, we first consider reset via a
swap operation between the system and a part of an effectively
cold bath.

This simple scenario corresponds to “throwing away” the
old state ρ0 and replacing it with a bath state γ ≈ |0〉〈0|.
We consider a bath of N-independent qubits, π(b) = γ ⊗N ,
which are initially in canonical equilibrium at temperature
T = 1/kBβ, such that γ = e−βHb/Zb. This bath of Gibbs states
is a bath of nearly pure |0〉〈0| states if the bath Hamiltonian
for each qubit is Hb = −Ebσz with the “effectively cold”
condition that Eb � kBT . To reset the state of the system, we
merely swap it with a state from the effectively cold bath. This
swap operation is implemented via a unitary operation on the
joint system-baths supersystem, as depicted in the following
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quantum-circuit diagram:

.

Note that entropy flow, as defined in Eq. (6), can be quan-
tified exactly via the initial temperature of the bath, as in
Refs. [10,11], for arbitrarily small environments. All thermo-
dynamic quantities can be calculated exactly: heat, change in
von Neumann entropy, and entropy production. Our calcula-
tion is valid for any Hamiltonian of the system and for any
initial state ρ0.2

The heat transferred to the bath is

Q = tr
(
ρ (b)

τ H (b)
) − tr

(
ρ

(b)
0 H (b)

)
= tr(ρ0Hb) − tr(γ Hb) (26)

= kBT tr(γ ln γ ) − kBT tr(ρ0 ln γ ), (27)

where we used the fact that Hb = −kBT ln γ − kBT ln Zb.
Meanwhile, the swap operation changes the von Neumann
entropy of the system Ssys = S(ρt ) according to

�Ssys = kBtr(ρ0 ln ρ0) − kBtr(γ ln γ ). (28)

Clearly, this reset-via-swap protocol has a unique mini-
mally dissipative initial state of α0 = γ since then Q = 0 and
�Ssys = 0 and so �α0 = 0. For any initial state ρ0, the entropy
production will be

�ρ0 = Q/T + �Ssys (29)

= kBD[ρ0‖γ ]. (30)

Clearly, Eq. (30) agrees with Eq. (11), which is expected
since Eq. (11) quantifies the entropy production for reliable
reset via any means. This and the following examples validate
the more general result, but also give us the opportunity to
explore the more nuanced implications.

Notably, if γ ≈ |0〉〈0|, then the entropy production di-
verges as ρ0 → |1〉〈1|. This points to a disadvantage of the
throwaway strategy to reset. It can be thermodynamically ad-
vantageous to recycle the system state, as demonstrated in the
next example where α0 can be made closer to the fully mixed
state than to the desired final state.

It may be recognized that Eq. (30) has the form of a
nonequilibrium addition to free energy. However, it is not
related to the free energy of the system, but rather, is related to
the change in nonequilibrium free energy of the bath, which is
consistent with the aforementioned decomposition of entropy
production. Note that Eq. (30) applies independently of the
Hamiltonian of the system, so long as ρ0 is the state of the
system at the time of the swap.

B. Reliable reset protocols via time-dependent Lindbladians

We now consider the scenario of single-qubit erasure in the
experimentally common regime well described by Markovian

2When the bath has many similar subsystems, the SWAP operation
has a negligible effect on the overall temperature of the bath. How-
ever, Eq. (6) only requires the initial temperature to be well defined,
and so does not require the large-N limit.

master equations. Following Ref. [6], we consider a family of
protocols that utilize two time-dependent control parameters
xt = (Et , θt ), which determine the time-varying Hamiltonian
of the system

Hxt = Et

2
[cos(θt )σz + sin(θt )σx], (31)

where σx, σy, and σz are the Pauli operators. While Et quanti-
fies the energy gap between the system’s instantaneous energy
eigenstates, θt parametrizes the instantaneous orientation of
the energy eigenbasis relative to the “computational” z basis.
If we assume the Markovian limit and detailed-balanced dy-
namics as the system interacts weakly with a large bosonic
bath, then the system evolves according to the instantaneous
Lindbladian [6]

ρ̇t = Lxt (ρt ) = i

h̄

[
ρt , Hxt

] + cEt

h̄

(
Nxt + 1

)
D
[
Lxt

]
(ρt )

+ cEt

h̄
NxtD

[
L†

xt

]
(ρt ), (32)

where D[L](ρ) = LρL† − 1
2 {L†L, ρ}, Nxt = (eβEt − 1)−1,

and c is the coupling strength to the bath. The time-dependent
lowering operator can be represented as

Lxt = 1
2 [cos(θt )σx − iσy − sin(θt )σz]

and satisfies the detailed balance condition [Lxt , Hxt ] = Et Lxt

[6,21].
This generic Hamiltonian and Lindbladian have a long

history of applications to many distinct physical systems [22],
and have been used recently to explore the nonequilibrium
thermodynamics of qubit erasure [6].

We consider three control protocols to reset the system
to the computational-basis state |0〉 = σz |0〉. For all proto-
cols, we choose the coupling strength c = 1/5, the duration
τ = 50β h̄, and the time-step for numerical integration dt =
β h̄/500.

For the first two protocols, the gap between energy eigen-
values changes smoothly as Et = E0 + (Eτ − E0) sin2( πt

2τ
)

with Eτ = 10kBT and E0 = Eτ /50. During the protocol an-
alyzed in Fig. 1, the energy eigenstates rotate according to
θt = πt/τ . Whereas, during the alternative protocol analyzed
in Fig. 2, the energy eigenstates have a fixed orientation ac-
cording to θt = π . These first two protocols are very similar
to Ref. [6], but with slightly different parameter settings, and
analyzed for different purposes.

The final protocol, shown in Fig. 3, achieves reset simply
via relaxation to an equilibrium state which (via a large energy
gap of 10kBT ) is designed to be very close to a pure state.

In each of Figs. 1, 2, and 3, we show the evolution of five
randomly sampled initial density matrices via the evolution
of their Bloch vectors. These are the first three panels of
each figure. The next three panels of each figure show the
evolution of expected heat, system entropy, and expected en-
tropy production that ensues from each of these five randomly
sampled initial conditions. Within each figure, each initial
state maintains its color and line-style across these six panels
of time-series data. The wide distribution in expected heat and
expected entropy production is evident for each protocol.

For each protocol, there is a single minimally dissipative
initial state. Our examples demonstrate that, in general, this is
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FIG. 1. A reliable protocol for erasing a qubit, which evolves
the energy gap and orientation of the energy eigenstates via Et =
E0 + (Eτ − E0 ) sin2(πt/2τ ) and θt = πt/τ , respectively. Top three
panels: Evolution of the Bloch vector for five randomly sampled ini-
tial states. Next three panels: Evolution of thermodynamic quantities
for the same five initial states. Bottom panel: Dissipation for 1000
random initial states vs D[ρ0‖α0] (red circles) and vs DKL[P0‖Q0]
(blue crosses).

FIG. 2. A reliable protocol for erasing a qubit, which evolves the
energy gap via Et = E0 + (Eτ − E0) sin2(πt/2τ ) while the orienta-
tion of the energy eigenstates is fixed via θt = π . Top three panels:
Evolution of the Bloch vector for five randomly sampled initial
states. Next three panels: Evolution of thermodynamic quantities
for the same five initial states. Bottom panel: Dissipation for 1000
random initial states, vs D[ρ0‖α0] (red circles) and vs DKL[P0‖Q0]
(blue crosses).
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FIG. 3. A reliable protocol for erasing a qubit, which achieves re-
set via relaxation to thermal equilibrium via fixed energy eigenstates
with Et = 10kBT and θt = π for 0 < t � τ . Top three panels: Evo-
lution of the Bloch vector for five randomly sampled initial states.
Next three panels: Evolution of thermodynamic quantities for the
same five initial states. Bottom panel: Dissipation for 1000 random
initial states, vs D[ρ0‖α0] (red circles) and vs DKL[P0‖Q0] (blue
crosses).

neither the initial equilibrium state nor the desired final state.
This is most apparent for the first protocol since the minimally
dissipative state is not diagonalized in the computational basis
that diagonalizes both the initial equilibrium state and the
desired reset state. (To see this, note that �a∗ is not along the ẑ
axis in the bottom panel of Fig. 1.) Moreover, this shows that
the minimally dissipative basis is, in general, distinct from the
energy eigenbasis.

For each quantum erasure protocol, we find the unique
minimally dissipative initial density matrix α0 via Eqs. (16)
and (25), from the entropy flow observed from four of the
random initial conditions. In the bottom panel of each figure,
dissipation versus the quantum relative entropy D[ρ0‖α0] is
shown in red circles for 1000 random initial states. The red
circles all lie along the identity, which clearly verifies Eq. (11),
showing that �ρ0 − �α0 = kBD[ρ0‖α0].

For the same 1000 random initial conditions for each fig-
ure, the off-diagonal positions of the blue crosses demonstrate
the insufficiency of the classical approximation, which would
use the Kullback-Leibler divergence rather than the quantum
relative entropy. Via Eq. (12), the horizontal gap between
D[ρ0‖α0] (red circles) and DKL[P0‖Q0] (blue crosses) quanti-
fies the initial coherence Cα0 (ρ0) for each of the 1000 random
initial conditions in each figure. All of this initial coherence,
relative to the eigenbasis of the minimally dissipative input
α0, directly leads to dissipation during RESET.

In the same bottom panels, we show the position of α0 in
the Bloch sphere via its Bloch vector �a∗. Finally, the green tri-
angle along the identity shows the dissipation incurred when
the initial state is the desired final state. Starting where you
end is not typically optimal; indeed, Fig. 1 shows that this is
nearly the worst way to start for that protocol.

While the distribution of thermodynamic quantities ap-
pears similar for the first two protocols, we emphasize that
the protocols are efficient for different initial states. This is
seen most immediately via the bottom panel of Figs. 1 and 2,
where it is apparent that each protocol has a distinct minimally
dissipative state. States closest to the respective minimally
dissipative states are efficient for the respective protocols.

The typical dissipation in Fig. 3 is much larger than in
the previous two cases since the minimally dissipative state is
closer to a pure state. In this case, it is interesting to note that
the Kullback-Leibler divergence is responsible for most of the
dissipation, with coherence playing a relatively minor role.
Recall that the relative entropy of coherence is always upper
bounded by a constant, ln d , for a d-dimensional system.
Hence, since this reset process is capable of very large en-
tropy production �ρ0 � kB ln d = kB ln 2, the classical limit
explains the bulk of the dissipation.

VI. CONCLUSION

Landauer’s bound for the heat required to reset a state is
achieved in the limit of zero entropy production. However,
we showed that bound to be unachievable for almost every
quantum input to any thermodynamic process for reliable
reset. This follows from the fact that there is a unique initial
quantum state leading to minimal entropy production for each
reliable reset protocol. Moreover, we demonstrated that when
a reset protocol is modified to bring this minimally dissipative
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initial state closer to a pure state, entropy production (and thus
also heat) diverges for all inputs that are not close to this pure
state.

For the case of qubit reset, we found the minimally dissi-
pative state analytically in terms of the entropy-flow vector,
which was introduced here. We anticipate that the entropy-
flow vector may be a useful concept also for larger quantum
systems, via a straightforward generalization of Eq. (14).

This requisite heat for RESET revises the thermodynamics
of computation, for both classical and quantum computing.
Commercial classical computers do not even come close to
Landauer’s bound; beyond the energetic cost, this excess heat-
ing has led to the end of Moore’s Law and intentional slowing
of computer-clock speed [23]. Our results help explain at least
part of this excess heat, while pointing to ways around it.
Similarly, the energy expended to manipulate qubits has been
orders of magnitude above Landauer’s bound for all quantum
computing demonstrations so far. While we may be willing
to budget significant energy for quantum computing, local
on-chip heating poses a serious threat to the very viability of
quantum computing. Notably, local heating introduces uncon-
trolled nonunitary evolution of quantum states that destroys
the delicate desired coherence and superpositions necessary
for a successful quantum computation. Accordingly, our re-
sults should be leveraged in the design of processes like state
preparation and error correction to minimize this errant heat.

Landauer’s bound is often invoked to draw physical impli-
cations from quantum information theory, via the universality
of thermodynamics. Our results show that this connection is
somewhat tenuous since Landauer’s bound is impossible to
achieve for almost every initial state for any reliable reset
mechanism. Nevertheless, nonequilibrium thermodynamics
offers refined information-theoretic equalities, like Eq. (9),
that are valid and offer tight predictions arbitrarily far from
equilibrium. Recognizing the impossibility of Landauer’s
bound will be especially important for designing practical
quantum computers, in which quantum states must be reli-
ably prepared while maintaining coherence through low-heat
transformations.
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APPENDIX A: ENTROPY FLOW AND INITIAL-STATE
DEPENDENCE OF ENTROPY PRODUCTION

The flow of energy, particles, volume, and so on all have an
equivalence-value to affect change, and entropy flow sums up
the equivalence-value of environmental resources consumed
during a transformation. We find that the expected entropy

flow can be represented most generally as

�ρ0 = −kB

∫ τ

0
tr
(
ρ̇ env

t ln πenv
t

)
dt, (A1)

where ρ env
t is the reduced state of the environment at time

t . πenv
t is a time-dependent reference state that represents

the environment as a set of thermodynamic baths B in local
equilibrium: πenv

t = ⊗
b∈B π

(b)
t . The equilibrium state π

(b)
t is

constructed with the bath’s operators [e.g., Hamiltonian H (b)
xt

,
number operators N (b,�)

xt
, etc.] that correspond to its variable

observable quantities (energy, particle numbers, etc.) [24,25].
For example, if the temperatures {T (b)

t }b∈B of the baths vary
over the course of a protocol, and the baths can only exchange
energy, then the reference equilibrium states of the baths are
canonical (π(b)

t ∝ e−H (b)
xt

/kBT (b)
t ) and Eq. (A1) reduces to the

familiar expression

�ρ0 =
∑
b∈B

∫
δQ(b)

T (b)
t

, (A2)

where δQ(b) = tr(ρ̇ (b)
t H (b)

xt
)dt is a small transfer of energy to

bath b.
As another prominent example, if each bath has a

time-independent grand canonical reference state [π(b) ∝
e−(H (b)

xt
−μ(b,�)N (b,�)

xt
)/kBT (b)

] fixed by the initial temperature T (b)

and chemical potentials {μ(b,�)}�, then Eq. (A1) reduces to
Eq. (6) of the main text

�ρ0 =
∑
b∈B

Q(b)

T (b)
− 1

T (b)

∑
�

μ(b,�)� 〈N (b,�)〉 .

In some thermodynamic frameworks, the environmental
reference state πenv

t in Eq. (A1) may be time dependent. We
will assume that, if πenv

t is time dependent, it is nevertheless
(at least approximately) independent of the initial state of the
system. Under this assumption, the expected entropy flow
is a linear function of the initial state of the system. This
linearity is evident once we write out the reduced state of
the environment as ρenv

t = trsys(Utρ0 ⊗ ρenv
0 U †

t ). Because the
expected entropy flow is a linear function of the initial state of
the system, Theorem 2 of Ref. [7] guarantees that the expected
entropy production from any initial state ρ0 (defined on the
support of α0) is quantified by

�ρ0 − �α0 = kBD[ρ0‖α0] − kBD[ρτ‖ατ ], (A3)

where

α0 ∈ argminρ0
�ρ0 .

This generalizes the main result of Ref. [7] to allow for a time-
dependent environmental reference state. This establishes, for
example, that Eq. (A3) remains valid in scenarios where the
temperature profile of a bath changes through time.

APPENDIX B: PRECISE RESET BOUNDS
RELATIVE ENTROPY

For any process whatsoever, 0 � D[ρτ‖ατ ] � D[ρ0‖α0].
But we can also derive a number of stricter bounds on the
final distinguishability D[ρτ‖ατ ] implied by precision and
reliability of reset protocols.
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Recall that the trace distance T (ρ, σ ) between two quan-
tum states ρ and σ is given by T (ρ, σ ) := 1

2‖ρ − σ‖1, where

‖A‖1 := tr(
√

A†A) is the trace norm.
We find that the precision of final states strongly upper

bounds the relative entropies among them. Recall that preci-
sion is quantified by: ε′ = supρ0,ρ

′
0

1
4‖�(ρ0) − �(ρ ′

0)‖1. This
implies

T (ρτ , ρ
′
τ ) � 2ε′ for all ρ0, ρ

′
0. (B1)

Reliablity gives weaker bounds. Reliability is quantified by
the error tolerance ε associated with a control protocol ε =
supρ0

1
2‖�(ρ0) − rτ‖1, where rτ is the desired final state. This

implies

T (ρτ , rτ ) � ε for all ρ0. (B2)

Invoking the triangle inequality, we note that

T (ρτ , ατ ) � 2ε′ � 2ε. (B3)

The authors of Ref. [16, Theorem 3] provided a gen-
eral bound on relative entropy between two density matrices
which, when applied to ρτ and ατ , says

D[ρτ‖ατ ] � 2T (ρτ , ατ ) ln d − 2T (ρτ , ατ )

× ln[2T (ρτ , ατ )] − T (ρτ , ατ ) ln s, (B4)

where s := min �ατ
is the smallest of ατ ’s eigenvalues and d

is the dimension of the Hilbert space.
Combining Eqs. (B3) and (B4) yields successive bounds in

terms of precision and error tolerance, respectively,

D
[
ρτ

∥∥ατ

]
� 4ε′ ln

(
d

4ε′√s

)
� 4ε ln

(
d

4ε
√

s

)
. (B5)

The authors of Ref. [16, Theorem 5] provided still much
tighter upper bounds on relative entropy between qubit states
(d = 2), which, when applied to ρτ and ατ , says

D[ρτ‖ατ ] �

⎧⎪⎪⎨
⎪⎪⎩

[T (ρτ , ατ ) + 1 − s] ln
[T (ρτ ,ατ )+1−s

1−s

] + [s − T (ρτ , ατ )] ln
[
1 − T (ρτ ,ατ )

s

]
if T (ρτ , ατ ) � s,

max
{− ln[1 − T (ρτ , ατ )],

[s + T (ρτ , ατ )] ln
[
1 + T (ρτ ,ατ )

s

] + [1 − s − T (ρτ , ατ )] ln
[
1 − T (ρτ ,ατ )

1−s

]}
if T (ρτ , ατ ) � s.

(B6)

Since this upper bound is monotonically increasing with T (ρτ , ατ ) (if s is held fixed), replacing T (ρτ , ατ ) with ε′ yields a
slightly weaker but still valid upper bound. Replacing ε′ with ε again yields a progressively weaker but still valid upper bound.
Hence, we find

D[ρτ‖ατ ] �

⎧⎪⎪⎨
⎪⎪⎩

(s − ε′) ln
(

s−ε′
s

) + (1 − s + ε′) ln
(

1−s+ε′
1−s

)
if ε′ � s,

max
{− ln(1 − ε′),

(s + ε′) ln
(

s+ε′
s

) + (1 − s − ε′) ln
(

1−s−ε′
1−s

)}
if ε′ � s,

(B7)

�

⎧⎪⎨
⎪⎩

(s − ε) ln
(

s−ε
s

) + (1 − s + ε) ln
(

1−s+ε
1−s

)
if ε � s,

max
{− ln(1 − ε),

(s + ε) ln
(

s+ε
s

) + (1 − s − ε) ln
(

1−s−ε
1−s

)}
if ε � s.

(B8)

These bounds are significantly tighter than Eq. (B5). Notice that Eqs. (B7) and (B8) are convex in each region where they are
a smooth function of ε′′ ∈ {ε, ε′} whereas Eq. (B5) is a concave function of ε′′.

The authors of Ref. [16, Theorem 6] furthermore provided sharp upper bounds on the relative entropy between qudit states
(d > 2), which, when applied to ρτ and ατ , says

D[ρτ

∥∥ατ ] �
{[

s + T (ρτ , ατ )
]

ln
[ s+T (ρτ ,ατ )

s

] + [s − T (ρτ , ατ )] ln
[ s−T (ρτ ,ατ )

s

]
if T (ρτ , ατ ) � s,[

s + T (ρτ , ατ )
]

ln
[ s+T (ρτ ,ατ )

s

]
if s � T (ρτ , ατ ) � 1 − s.

(B9)

Again, these bounds are monotonically increasing with T (ρτ , ατ ) (if s is held fixed), so replacing T (ρτ , ατ ) with ε′ or ε

yields valid but progressively weaker upper bounds:

D
[
ρτ

∥∥ατ

]
�

{
(s + ε′) ln

(
s+ε′

s

) + (s − ε′) ln
(

s−ε′
s

)
if ε′ � s,

(s + ε′) ln
(

s+ε′
s

)
if s � ε′ � 1 − s,

(B10)

(B11)

�
{

(s + ε) ln
(

s+ε
s

) + (s − ε) ln
(

s−ε
s

)
if ε � s,

(s + ε) ln
(

s+ε
s

)
if s � ε � 1 − s.

(B12)

These bounds show that D[ρτ‖ατ ] → 0 rather quickly as ε′′ → 0, for either ε′′ ∈ {ε, ε′}. For ε′′ � s, the upper bound is
parabolic: D[ρτ‖ατ ] � ε′′2/s.
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It is interesting to consider how these bounds apply to the
examples for RESET given in the main text. For the first exam-
ple, reset via SWAP, where we throw away the system state and
replace it with a nearly pure state from an effectively cold en-
vironment, the final state is always given exactly by the initial
bath state γ . This implies ε′ = 0 and so �ρ0 = kBD[ρ0‖α0]
exactly for this example, which was indeed verified by explicit
calculation.

For the examples or RESET via time-dependent Lindbla-
dian dynamics, the precision of final states is related to the
eigenvalues of the Lindbladian throughout the protocol. At
each moment, the Lindbladian dynamics imply an exponential
decay of distinction among states, as all states converge to-
wards the instantaneous steady state of the Lindblad operator.
The decay rates are given by the nonzero eigenvalues of the
Lindblad operator. In these examples, precision can always
be increased by extending the duration of the protocol, and
ε′ decays exponentially towards 0 with time. This means
that �ρ0 = kBD[ρ0‖α0] will be an excellent approximation
for RESET via Lindbladian dynamics, given that the protocol
is run for long enough to ensure reliable reset towards the
desired state. Indeed, our numerical investigations verify this
excellent agreement with Eq. (11).

APPENDIX C: ANY RELIABLE RESET OPERATION
HAS A UNIQUE MINIMALLY DISSIPATIVE STATE

WITH FULL SUPPORT

We will prove that the minimally dissipative input state to
any reliable reset protocol will have full support on the domain
of states to be reset.

Consider an initial state ξ0 that does not have full support.
This state has a collection of eigenvalues � and a spectral
decomposition ξ0 = ∑

λ∈� λ |λ〉〈λ| with 0 � λ � 1 for all λ

and
∑

λ∈� λ = 1. By assumption, ξ0 must have a spectral de-
composition with at least one zero eigenvalue with associated
spectral projection operator |o〉〈o| that acts on a subspace of
the domain to be reset. (We use |o〉 here for the eigenstate as-
sociated with the eigenvalue of zero, so that it is not confused
with a computational-basis state.)

We will now show that (if entropy flow is finite for all
inputs) there is always a state ξ ′

0 = (1 − δ)ξ0 + δ |o〉〈o| with
greater support than ξ0 that dissipates less than ξ0 for some
0 < δ < 1. Accordingly, a state that lacks full support will
never be the minimally dissipative input to a reliable reset
protocol.

Recall from Eq. (17) that the entropy production during any
reliable reset protocol is

�ρ0 = �ρ0 + kBS(rτ ) − kBS(ρ0),

where rτ is the input-independent final state. Furthermore, recall from Sec. A that the expected entropy flow is a linear function
of the initial state. Note that the eigenvalues of ξ ′

0 are (1 − δ)λ for each λ ∈ � \ {0}, while one of the zero eigenvalues of ξ0

maps to an eigenvalue of δ for ξ ′
0.

The entropy production from input ξ ′
0 is thus

�ξ ′
0
= �(1−δ)ξ0+δ|o〉〈o| (C1)

= δ�|o〉〈o| + (1 − δ)�ξ0 + kB

{
(1 − δ)

∑
λ∈�

λ ln[λ(1 − δ)]

}
+ kBδ ln δ + kBS(rτ ) (C2)

= δ�|o〉〈o| + (1 − δ)�ξ0 − kB(1 − δ)S(ξ0) + kB(1 − δ) ln(1 − δ) + kBδ ln δ + kBS(rτ ) (C3)

= δ�|o〉〈o| + (1 − δ)�ξ0 − kBB(δ), (C4)

where B(δ) = −δ ln δ − (1 − δ) ln(1 − δ) is the binary en-
tropy function, and we used the fact that

∑
λ∈� λ = 1.

If the difference between �ξ0 and �ξ ′
0

is positive, then ξ0

cannot be a minimally dissipative state. From Eq. (C4), we
find

�ξ0 − �ξ ′
0
= kBB(δ) − δ

(
�|o〉〈o| − �ξ0

)
. (C5)

If δ = 0 then, of course, �ξ0 = �ξ ′
0

since ξ ′
0 is then, in fact,

equal to ξ0. However, we find that �ξ0 − �ξ ′
0

has a positive
derivative with respect to δ, from δ = 0 up to some sufficiently
small finite value. That is,

d

dδ

(
�ξ0 − �ξ ′

0

) = kB ln

(
1 − δ

δ

)
− (

�|o〉〈o| − �ξ0

)
. (C6)

Since �|o〉〈o| − �ξ0 is assumed to be finite, while ln( 1−δ
δ

) grows
unbounded as δ → 0, this tells us that �ξ0 > �ξ ′

0
for suffi-

ciently small δ. Hence, ξ0 cannot be the minimally dissipative
state of any reliable reset protocol. Notably, the only assump-
tion that we made about ξ0 is that it does not have full support.

We showed that any state lacking full support cannot be
the minimally dissipative input for any reliable reset protocol.
Thus, the minimally dissipative state α0 must have full support
on the domain of states to be reset.

By Eq. (11), the dissipation from any input state ρ0 exceeds
this minimal dissipation by kBD[ρ0‖α0], which is positive for
all ρ0 �= α0.

APPENDIX D: EXISTENCE OF (AND AN EXPRESSION
FOR) THE ENTROPY FLOW VECTOR

Entropy flow is an affine function of the initial state. Recall
from Eq. (5) that the expected entropy flow can be expressed
as

�ρ0 = −kB

∫ τ

0
tr
(
ρ̇ env

t ln πenv
xt

)
dt

= −kB

∫ τ

0
tr

{[
d

dt
trsys

(
Ux0:t ρ0 ⊗ ρ env

0 U†
x0:t

)]
ln πenv

xt

}
dt,

(D1)
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where the environmental reference state πenv
xt

is independent
of the initial state of the system.

For any initial state ρ0 = I/2 + 1
2 �a · �σ , it is then clear

that

�ρ0 = −kB

∫ τ

0
tr

({
d

dt
trsys

[
Ux0:t

(
I/2 + 1

2
�a · �σ

) ⊗ ρ env
0 U†

x0:t

]}
ln πenv

xt

)
dt (D2)

= �I/2 − 1

2
�a · kB

∫ τ

0
tr

{[
d

dt
trsys

(
Ux0:t �σ ⊗ ρ env

0 U†
x0:t

)]
ln πenv

xt

}
dt . (D3)

This shows that there exists an initial-state-independent
vector �φ = (φx, φy, φz ) such that

�ρ0 = �I/2 + 1
2 �a · �φ. (D4)

We call �φ the “entropy-flow vector” induced by the control
protocol.

Beyond merely proving its existence, Eq. (D3) gives an
explicit construction for the entropy-flow vector

�φ = −kB

∫ τ

0
tr

{[
d

dt
trsys

(
Ux0:t �σ ⊗ ρ env

0 U†
x0:t

)]
ln πenv

xt

}
dt .

(D5)

Alternatively, this could be written component-wise as

φk = −kB

∫ τ

0
tr

{[
d

dt
trsys

(
Ux0:t σk ⊗ ρ env

0 U†
x0:t

)]
ln πenv

xt

}
dt

(D6)

for k ∈ {x, y, z}.
When the environmental reference state is time indepen-

dent, such that πenv
xt

= ⊗
b∈B π(b), this reduces to

�φ = −
∑
b∈B

kBtr
[
trsys,B\b

(
Ux0:τ �σ ⊗ ρenv

0 U†
x0:τ

)
ln π(b)

]
. (D7)

APPENDIX E: FURTHER IMPLEMENTATIONS
FOR QUANTUM MEMORY RESET IN THE WEAK

COUPLING REGIME

Here we discuss an approach to memory reset in the weak
coupling regime.

We first consider the simplest scenario of single qubit reset
to |0〉. An obvious way to implement reset is the following.

(1) Attach the qubit to a single thermal bath at temper-
ature T .

(2) Change the system Hamiltonian from Hx0 to Hxτ
=

E |1〉 〈1| with E � kBT .
(3) Allow the system to equilibrate, so that ρτ ≈ πxτ

≈
|0〉 〈0|.

If the desired reset state is a pure state rτ �= |0〉 〈0|, then
the system can subsequently be detached from the thermal
reservoir and unitarily evolved to rτ . Alternatively, the desired
state can be attained more directly by driving to the final
Hamiltonian Hxτ

= E (I − rτ ). With the luxury of much time,
the error can be made arbitrarily small.

A related procedure allows reliable reset to any state rτ .

(1) Attach the qubit to a single thermal bath at temper-
ature T .

(2) Change the system Hamiltonian from Hx0 to Hxτ
=

−kBT ln rτ + c, where c is an arbitrary constant.
(3) Allow the system to equilibrate to πxτ

= rτ .
In the quasistatic limit, this reset can be achieved with zero

entropy production if the initial state is known. The proto-
col can then be designed to make ρ0 = α0. To achieve zero
dissipation, the initial system-Hamiltonian should change in-
stantaneously from Hx0 to Hx0+ = −kBT ln ρ0 + c′, where c′ is
an arbitrary constant. Subsequently, the Hamiltonian should
be changed quasistatically (via any continuous path) from
Hx0+ to Hxτ

. In such scenarios, the work invested will equal the
change in free energy, so that there is zero entropy production.
If, however, the initial state ρ0 is not equal to the anticipated
state α0 = πx0+ ∝ e−βHx0+ , then there will be dissipation equal
to the loss of initially induced nonequilibrium addition to free
energy: �ρ0 = kBD[ρ0‖πx0+ ].

Notably, in this sudden-then-quasistatic regime, the fully
mixed state can be designed to be the minimally dissipative
state by choosing Hx0+ to be a fully degenerate Hamiltonian.
The entropy production will then be �ρ0 = kBD[ρ0‖I/d] for
a d-dimensional system. As mentioned in the main text, this
results in a constant heat Q = kBT ln d , independent of the
input. While this heat is relatively small, it is, however, larger
than Landauer’s bound whenever ρ0 �= I/d .

In the slow but finite-duration linear response regime, re-
liable reset can still be achieved within some small error
tolerance ε, but the dissipation will scale as 1/τ . Optimal
protocols in the linear response regime can be found as natural
geodesics induced by the friction tensor [26–28].

As the protocol becomes quick relative to the relaxation
timescales for the system, the protocol must be modified
to maintain reliable reset to the desired state. One way to
achieve this is via counterdiabatic alterations to the driv-
ing [29]. Counterdiabatic driving can, for example, enforce
that the system stays along the optimal linear-response state
trajectory.

In these finite-time scenarios, the dissipation will be non-
trivial for all initial states, but our equality relating dissipation
among all possible initial states will remain valid.

These results can be easily extended to a scenario for quan-
tum reset of N qubits. An obvious way to implement RESET is
the following.

(1) Attach the N qubits to a single thermal bath at temper-
ature T .

(2) Change the system’s Hamiltonian from Hx0 to Hxτ
=

E (I − (|0〉 〈0|)⊗N ) with E � kBT .
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(3) Allow the system to equilibrate, so that ρτ ≈ πxτ
≈

(|0〉 〈0|)⊗N .
(4) Detach the qubits from the thermal bath and unitarily

transform them to any desired N-qubit pure state.
This allows, for example, reset to the maximally entangled

state. Alternatively, the desired reset state could be achieved
more directly by designing the final Hamiltonian Hxτ

such
that rτ is its equilibrium state. This suggests the alternative
procedure for resetting to any N-qubit state.

(1) Attach the N qubits to a single thermal bath at temper-
ature T .

(2) Change the system’s Hamiltonian from Hx0 to Hxτ
=

−kBT ln rτ + c, where c is an arbitrary constant.
(3) Allow the system to equilibrate to πxτ

= rτ .
The earlier comments about finite-time protocols (linear re-

sponse, counterdiabatic driving, etc.) all apply to this general
N-qubit reset as well.
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