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Fraudulent white noise: Flat power spectra belie arbitrarily complex processes
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Power spectral densities are a common, convenient, and powerful way to analyze signals, so much so that
they are now broadly deployed across the sciences and engineering—from quantum physics to cosmology
and from crystallography to neuroscience to speech recognition. The features they reveal not only identify
prominent signal frequencies but also hint at mechanisms that generate correlation and lead to resonance.
Despite their near-centuries-long run of successes in signal analysis, here we show that flat power spectra can be
generated by highly complex processes, effectively hiding all inherent structure in complex signals. Historically,
this circumstance has been widely misinterpreted, being taken as the renowned signature of “structureless”
white noise—the benchmark of randomness. We argue, in contrast, to the extent that most real-world complex
systems exhibit correlations beyond pairwise statistics their structures evade power spectra and other pairwise
statistical measures. As concrete physical examples, we demonstrate that fraudulent white noise hides the
predictable structure of both entangled quantum systems and chaotic crystals. To make these words of warning
operational, we present constructive results that explore how this situation comes about and the high toll it takes
in understanding complex mechanisms. First, we give the closed-form solution for the power spectrum of a very
broad class of structurally complex signal generators. Second, we demonstrate the close relationship between
eigenspectra of evolution operators and power spectra. Third, we characterize the minimal generative structure
implied by any power spectrum. Fourth, we show how to construct arbitrarily complex processes with flat power
spectra. Finally, leveraging this diagnosis of the problem, we point the way to developing more incisive tools for
discovering structure in complex signals.
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I. INTRODUCTION

Innovative science probes the unknown. Success in dis-
covering the mechanisms that underlie the systems we seek
to understand, though, requires distinguishing structure from
noise. Often, this distinction falls to discretion: Structure is
that part of a signal we can predict, while noise stands in as a
catch-all for everything else. This conundrum holds especially
in the analysis of signals from truly complex systems, as when
analyzing data from multielectrode arrays in brain tissue [1]
or social experiments [2]. These systems are often said to be
“noisy” even though the so-called noise may be entirely func-
tionally relevant but in an unknown way [3]. Such descriptions
fall far short of a principled approach that explains all trends
and correlational structure, which would claim success only
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when all that remains unexplained in the signal is structureless
white noise. Even this principled approach ultimately begs
the central question, though: How do we test whether an
apparently random signal is truly white noise?

The challenge of discovering structure in noisy signals is
compounded manifold, as we demonstrate in the following,
when our chosen observables hide arbitrary amounts of in-
principle-predictable structure behind a familiar signature of
white noise—the flat power spectrum. Said simply, observ-
ables can be completely devoid of pairwise correlation, while
still embodying structure in higher-order correlations. More
precisely, we will show that structure can be hidden beyond
any arbitrarily large order-N correlation—that not appearing
in pairwise, three-way, or any n-way statistics, up to some
arbitrarily large N . Moreover, the hidden structure can be
arbitrarily sophisticated. It can be used, for example, to embed
messages while shifting (and so hiding) the messages’ content
beyond N-way correlation. Here we explore the structures
conveyed and hidden by power spectra, revealing a novel
perspective on the interplay between structure and noise in
Fourier analysis.

Section II discusses temporal structure and provides
closed-form expressions for the power spectra from au-
tonomous signal generators. It highlights the intimate

2643-1564/2021/3(1)/013170(48) 013170-1 Published by the American Physical Society

https://orcid.org/0000-0002-0135-3778
https://orcid.org/0000-0003-4466-5410
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.013170&domain=pdf&date_stamp=2021-02-22
https://doi.org/10.1103/PhysRevResearch.3.013170
https://creativecommons.org/licenses/by/4.0/


PAUL M. RIECHERS AND JAMES P. CRUTCHFIELD PHYSICAL REVIEW RESEARCH 3, 013170 (2021)

connection between power spectra and eigenspectra of a sys-
tem’s time-evolution generator. Section III then introduces a
suite of results on structure that is hidden by power spec-
tra. Notably, it introduces a general condition for fraudulent
white noise processes—structured processes with a flat power
spectrum—which applies very broadly, including to input-
dependent processes with nonstationary high-order statistics.
Section IV demonstrates that fraudulent white noise is ob-
served in important physical systems. We show that fraudulent
white noise arises in measurements of entangled quantum
systems. We also show that flat diffraction patterns belie
the predictable structure of chaotic crystals. Taken together
the results emphasize the power spectrum’s shortcomings for
the task of structure detection. In response, Sec. V considers
more sophisticated measures of structure. We give closed-
form expressions for polyspectra—which are often advocated
as the natural next step for detecting higher-order structure—
but show that these too have severe blind spots. This motivates
us to introduce the dependence function which identifies the
presence of novel finite-range dependencies that contribute
to total correlation. Section VI concludes the development.
Appendices present detailed derivations, as well as several
generalizations, of the main results.

II. STRUCTURE IN SPACE AND TIME?

Pairwise correlations are encountered throughout the sci-
ences and engineering, especially in statistical physics. They
are assumed, estimated, relied on, designed with, and used for
interpretation widely. The following explores several specific
examples of pairwise correlation that arise in different fields.
These will set the context for our development, particularly
for experts in the associated fields. However, our general
results should be accessible and relevant across disciplines,
as they rely primarily on basic probability theory and linear
algebra.

A well-studied lesson from statistical physics is that diverg-
ing correlation length heralds the emergence of new types of
order. Remarkably, mechanistically distinct physical systems
share many universal behaviors near a critical point of emer-
gent order, including the scaling of spatial pairwise correlation
length [4]. More broadly, pairwise correlations are indica-
tors of fundamental physical processes. For example, the
fluctuation–dissipation theorem says that pairwise temporal
correlations in equilibrium determine the friction encountered
in transport processes. The Green-Kubo relations [5] make
this explicit. Far from equilibrium, say, in computing devices
and biological systems composed of excitable media, tem-
poral correlations are signatures of richly coordinated state
trajectories.

Pairwise correlations are directly viewed in the frequency
domain via power spectral densities. Indeed, power spectra
are employed as a basic data analysis tool in many scientific
domains and have been key to major scientific discoveries.
For example, comparing alternative theoretical predictions
for power spectra of incident electromagnetic radiation from
locally thermalized bodies, an unexpected discrepancy—the
ultraviolet catastrophe—led to the acceptance of Planck’s the-
ory of quantized energies and the subsequent birth of quantum
theory [6–8]. A contemporary example of the prominent role

of power spectra is seen in the exquisitely detailed map of
the cosmic microwave background (CMB)—a snapshot of the
early universe’s spatial correlations. In fact, models of the
early universe are now benchmarked against their ability to
replicate the CMB power spectrum [9].

In applied mathematics, power spectra played a key role in
highlighting the defining features of the strange attractors of
dynamical systems theory [10,11]. This led to the discovery
of Ruelle-Pollicott resonances, where mixing and the decay
of correlations in chaotic systems were related to the point
spectrum of the Ruelle-Perron-Frobenius operator [12–14].
Indeed, the power spectra of chaotic systems are still actively
used to analyze the behavior of everything from open quantum
systems [15,16] to climate models [17].

The famous 1/ f decay of power spectra found in many
complex systems has received considerable attention through-
out many decades [18–20]—sometimes being attributed to
self-organized criticality [21]; almost always being taken as
a signature of truly complex systems. More recently, the
value of α in 1/ f α noise—and deviations from this mean
behavior—are used to interpret particle tracking experiments
[22,23]. Related advances have enabled extraction of physi-
cal properties from power spectral analyses of nonstationary
processes [24–26].

Power spectra are regularly used to discover structure
in materials science and biology, too. x-Ray diffraction
patterns—used to identify crystalline and molecular orga-
nization and central to discovering DNA’s double helix
[27–30]—are power spectra of scatterer densities, as we
explain in Appendix A. Power spectra have been used
to identify temporal correlations in single-neuron spike
trains, refuting the common Poissonian white-noise assump-
tion common in theoretical and computational neuroscience
[31–34]. This allows the possibility that temporal correla-
tions in the spike train—rather than just the firing rate—can
play an important role in the neural code [35,36]. On a
much larger (mean-field) scale, brain wave activity in dif-
ferent frequency bands gives signatures of normal brain
functioning, as well as pathological conditions. Rhythmic
brain-wave activity is clinically assessed through real-time
power spectra of electroencephalography (EEG) signals
[37–39].

From the smallest to the largest scales in the universe, when
probing both the inanimate and the animate, power spectra
are a central diagnostic tool for structure and validating sci-
entific models. Their use is so important that special-purpose
spectrum analyzers are standard laboratory test equipment;
they can be readily purchased from dozens of major
manufacturers.

Power spectra report pairwise correlations in a signal. But
how much of a system’s structure is faithfully represented by
pairwise correlation? Are there important types of order that
evade power spectra completely? To answer these questions,
we first consider the problem of hidden structure through the
lens of autocorrelation and power spectra. Only then, once
the strengths and weakness of power spectra are clear, do we
move on to more sophisticated measures of structure. Along
the way we trace a path that begins to reveal what one can
mean by “statistical dependency,” “correlation,” and “struc-
ture.”
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A. Correlation and power spectra

To provide a common ground, consider discrete-time
processes described by an interdependent sequence
. . . X0X1X2 . . . of random variables Xt that take on values
x ∈ A within an alphabet assumed (for now) to be a subset
of the complex numbers: A ⊂ C. (For concreteness here, we
interpret t as indexing time t = tτ0, where τ0 is the duration
of each time step. For other kinds of stochastic process, t may
represent spatial or angular coordinates.) An observed process
may have a discrete domain, as with a classical discrete-time
communication channel or a series of quantum measurements
or, otherwise, may be a regularly sampled process evolving in
continuous time.

A signal’s power spectrum or, more properly, its power
spectral density quantifies how its power is distributed across
frequency [40,41]. For a discrete-domain process it is as fol-
lows:

P(ω) = lim
N→∞

1

f0N

〈∣∣∣∣∣
N∑

t=1

Xt e
−iωt

∣∣∣∣∣
2〉

, (1)

where the angle brackets denote the expected value over
the random variable chain X1X2X3 · · · XN , ω = 2π f / f0 is
the angular frequency, f is the frequency, and f0 = 1/τ0 is the
fundamental frequency. We set f0 to unity in the discrete-time
case. In the continuous-time limit where τ0 = dt → 0, the
power spectrum becomes

P( f ) = lim
L→∞

1

L

〈∣∣∣∣∫ L

0
Xte

−i2π f t dt
∣∣∣∣2
〉
,

where we use the fact that ωt = 2π f t. In either discrete or
continuous time, integrating over any band of frequencies
gives the power in that band.

For wide-sense stationary stochastic processes the autocor-
relation function,

γ (τ ) = 〈 X t Xt+τ 〉, (2)

is independent of the global time shift t and depends only
on the relative time separation τ between observables [42].
The bar above Xt denotes its complex conjugate. Equation (2)
makes plain the connection between pairwise statistics and
the pairwise correlation function. For wide-sense stationary
stochastic processes, the power spectrum is also determined
by the signal’s autocorrelation function γ (τ ):

P(ω) = lim
N→∞

1

f0N

N∑
τ=−N

(N − |τ |)γ (τ )e−iωτ . (3)

The windowing function N − |τ | appearing in Eq. (3) is a di-
rect consequence of Eq. (1); it is not imposed externally, as is
common practice in signal analysis. (This factor is important
for controlling convergence in our subsequent derivations.)

Equation (3) suggests that the power spectrum is very
nearly the Fourier transform of the autocorrelation function,
except for the N − |τ | term. In fact, the Wiener-Khinchin
theorem proves that the power spectrum is indeed equal to
the Fourier transform of the autocorrelation function for wide-
sense stationary processes [43,44]. Note, too, that the pairwise

correlation function γ (τ ) can be obtained via the inverse
Fourier transform of the power spectrum P(ω).

B. Temporal structurelessness

Our goal is to understand temporal structure and to identify
it in stochastic processes. To detect structure, even when hid-
den, we first must establish a baseline reference process that
has no temporal structure: genuine white noise.

White noise processes, if we remove their mean value, have
zero autocorrelation for all τ > 0. Colloquially, white noise is
often taken as a synonym for any completely random process
with no statistical dependencies whatsoever. To be precise, we
define genuine white noise as those processes for which each
random variable Xt is statistically independent of all others
Xt ′ 	=t , and each is identically distributed according to the same
probability density function (PDF) over the alphabet. That is,
the random variables in the sequence are independent and
identically distributed (IID).

Familiar examples include a sequence of coin flips or the
sequence of sums when rolling a pair of dice. As an ex-
ample from contemporary physics, consider the (classical)
process that results from observing a sequence of Bell-pair
quantum states [45]. For each Bell pair, one of the entangled
particles is sent to Alice and the other sent to Bob. Alice
makes a sequence of measurements (along any measurement
axis). The measurement output sequence she observes is pure
white noise, with each measurement outcome having equal
and independent probability of being up or down along the
measurement axis. In fact, more sophisticated deployments of
Bell pairs are being developed to provide certifiable random
number generation [46]. Experiments now concentrate on in-
creasing the rate of generating white noise [47,48].

The most recognizable feature of all white noise processes
is their flat power spectrum. For any IID process, it follows
directly from Eq. (2) that γ (0) = 〈|Xt |2〉, whereas γ (τ ) =
|〈Xt 〉|2 for τ 	= 0. From Eq. (3), this immediately yields the
familiar flat power spectrum of white noise, together with a
δ function at zero frequency, corresponding to the signal’s
constant offset. For real-valued IID processes with zero mean
(and f0 = 1), this simplifies further to γ (τ ) = σ 2 δ0,τ and so
P(ω) = σ 2. In fact, the flat power spectrum has height equal
to the variance σ 2 = 〈X 2

t 〉 − 〈Xt 〉2 of the white noise for any
real-valued IID process. The flat power spectrum for IID pro-
cesses indicates that any temporal structure in the generating
source has such short memory that it vanishes within the short
sampling time τ0 between each observation.

Gaussian white noises tend to be the most commonly em-
ployed white noise processes and, usually, for good reason. By
the central limit theorem, Gaussian white noise arises gener-
ically in systems whenever many events—with amplitude of
finite variance and with rapidly decaying correlation (com-
pared to the timescale between observations)—contribute
additively to each individual observation. Suppose, for ex-
ample, that the expected number of these contributions to
each new observation is simply proportional to the time since
the last observation. When sampled at interval dt = τ0, the
central limit theorem then tells us that each observation of the
accumulated noise is IID and Gaussian distributed with vari-
ance σ 2

η ∝ dt . This immediately leads to the familiar standard
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FIG. 1. Genuine white noise processes have no memory: Rep-
resented structurally by a state machine with a single state that
is repeatedly visited with each observation. The same probability
density function, inscribed in the state, is sampled at each time
step. (a) Gaussian white noise process (inset) and its flat power
spectrum. (b) Non-Gaussian white noise process (inset) and its flat
power spectrum. For each (a) and (b), the flat power spectrum is
given theoretically (thick gray), with height equal to the variance of
the probability density function. We also display the numerically ob-
tained power spectrum (thin blue) for each. The class of all possible
(not-necessarily Gaussian) memoryless white noises is identical with
the class of processes generated by single-state machines. This class,
in turn, is identical to that of all IID processes (spanning all pos-
sible probability density functions). These temporally structureless
processes constitute all possible varieties of genuine white noise.

deviation ση ∝ √
dt of the additive noise η(t ) that appears

when numerically integrating stochastic differential equations
(e.g., Langevin equations); this, in turn, produces the trajecto-
ries of slower random variables [49].

The memoryless nature of repetitive sampling from a dis-
tribution is apparent in the state machine shown in Fig. 1(a).
The same Gaussian distribution is repeatedly sampled with

probability 1 (as depicted by the self-transition probability
there) for each observation, regardless of what happened pre-
viously [50].

Other “structureless” white noises are also possible. In fact,
any of an uncountably infinite set of different IID processes—
Gaussian, Poisson, Bernoulli, or any process that resamples
a particular distribution at each time step—all yield the flat
power spectrum or white noise. Non-Gaussian noise can
emerge from repetitive sampling of a system’s (non-Gaussian)
stationary distribution when the relaxation timescales are far
shorter than the time elapsed between samples. Alternatively,
non-Gaussian white noise can arise when only a few physi-
cal events contribute to each observation, in which case the
non-Gaussianity may reveal features of the physical gener-
ative mechanism. Nevertheless, these processes possess no
temporal structure on the timescale of observation and, in
particular, generate absolutely no correlations in the sequence
of observations.

The hallmark of this structural paucity is the single state for
the hidden Markov model (HMM) that describes all of these
IID processes, as depicted in Fig. 1(b) [51]. The single state
means that no influences from the past can affect the next or
future samples. These are the genuine white noises.

In sharp contrast, we explore stochastic processes with
arbitrarily sophisticated temporal structure on the timescale of
observation. The much more general class we next consider
allows for a thorough investigation of temporally structured
stochastic processes. One surprising feature is that these very
structured processes, described by arbitrarily complicated
transition dynamics within memoryful collections of inter-
nal states, can have the flat power spectrum of white noise.
These are the fraudulent white noise processes: white noise
processes with a flat power spectrum that are nevertheless not
genuine white noise. Fraudulent white noise contains statisti-
cal dependencies—predictable structure completely veiled by
common measures of correlation.

C. Models of temporal structure

Structure arises over time from the interdependence among
observables. To explicitly address structure in a broad class
of temporally structured processes, we use HMMs as our
preferred representation for autonomous signal generators
[54–60]. Later sections introduce yet more sophisticated mod-
els with input dependence.

Despite Markovian state-to-state transitions, HMMs can
generate temporally structured non-Markovian stochastic
processes—those with infinite history dependence (infinite
Markov order). Processes generated by even finite-state
HMMs, in fact, typically have infinite-range statistical de-
pendencies between observables since simple state-transition
motifs guarantee this feature [61]. In addition to this richness
and their ability to compactly generate the exact temporal
statistics of nonlinear dynamical systems, HMMs are attrac-
tive since they are amenable to linear operator techniques
[62–68].

Section IV employs HMMs to represent (i) sequential
measurements of entangled quantum systems, (ii) scattering
factors of disordered materials, and (iii) ion transport through
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FIG. 2. Simple 3-state HMM that generates a stochastic process
according to the state-to-state transition dynamic T and the PDFs
{p(X |s)}s∈S associated with each state. Theorem 1 asserts that its
power spectrum is the same (modulo constant offset) as the power
spectrum generated from an alternative process where each state’s
PDF is solely concentrated at the average value 〈X 〉p(X |s) of the
original PDF associated with the state.

biomolecular channels. But, to get there, we must first intro-
duce the general properties of HMMs.

Let the 4-tuple M = (S,A,P, T ) be a discrete-time
HMM that generates the stationary stochastic process
. . . X−2X−1X0X1X2 . . . according to the following. S is the
(finite) set of states of the internal Markov chain and A ⊆ C
is the observable alphabet. St is the random variable for the
hidden state at time t that takes on values s ∈ S. Xt is the
random variable for the observation at time t that takes on
values x ∈ A.

Given the hidden state at time t , the possible observations
are distributed according to the conditional probability density
functions: P = {p(Xt |St = s)}s∈S . For each s ∈ S, p(Xt |St =
s) may be abbreviated as p(X |s) since the probability den-
sity function in each state is assumed to not change over t .
Similarly, we will write p(x|s) for p(Xt = x|St = s). Finally,
the hidden-state-to-state stochastic transition matrix T has ele-
ments Ts,s′ = Pr(St+1 = s′|St = s), which give the probability
of transitioning from hidden state s to s′ given that the system
is in state s, where s, s′ ∈ S. It is important for subsequent
developments that Pr(·) denotes a probability in contrast to
p(·) which denotes a probability density.

Epitomizing the processes in the class considered, Fig. 2
presents a rather simple HMM with continuous observable
alphabet A = R, whose samples are distributed according to
the probability density function shown within each hidden
state. As seen in the HMM’s top-right state, both continuous
probability density functions and discrete output probabilities
can be accommodated in this framework: Finite probability of
a particular observable is accomplished by an appropriately
weighted Dirac δ function in the probability density function.
The memoryful structure in Fig. 2 should be contrasted with

St−1 St St+1

Xt−1 Xt Xt+1

FIG. 3. Bayesian network for a state-emitting hidden Markov
model graphically depicts the structure of conditional independence
among random variables for the hidden state {Sn}n∈Z at each time n
and the random variables {Xn}n∈Z for the observation at each time n.

the completely memoryless processes of genuine white noise
shown in Fig. 1.

The Bayes network in Fig. 3 depicts the structure of
conditional independence among the random variables for
these memoryful signal generators. For example, for a generic
HMM, p(Xt |Xt−N . . . Xt−2Xt−1 = xt−N . . . xt−2xt−1) cannot be
simplified since the condition on even arbitrarily distant past
observables can influence the probability of the current ob-
servable. However, when conditioning on hidden states, the
situation can simplify markedly. For example:

p(Xt |Xt−N . . . Xt−2Xt−1 = xt−N . . . xt−2xt−1,

St−N . . .St−2St−1 = st−N . . . st−2st−1)

= p(Xt |St−1 = st−1)

=
∑
s∈S

Tst−1,s p(X |s).

The general properties of HMMs allow one to calculate any
statistic about the generated process from the hidden-state-to-
state transition matrix T and set P of conditional probability
density functions. For simplicity in the following, assume a
finite set of hidden states and a single attracting component.
Then every transition matrix T admits a unique stationary
distribution π. This is determined as T ’s left eigenvector
associated with the eigenvalue of unity: 〈π|T = 〈π|. The
eigenvector is normalized in probability: 〈π|1〉 = 1, where
|1〉 is the column vector of all ones. Note also that |1〉 is
the right eigenvector of T associated with the eigenvalue of
unity, T |1〉 = |1〉. This property conserves state probability in
hidden Markov chain evolution.

We can now provide the correlation functions and power
spectral density in general and in closed form for the entire
class of stochastic process generated by finite-state HMMs.
Helpfully, for particular HMMs, the expressions become ana-
lytic in the model parameters.

Appendix B shows that the autocorrelation function is
given by:

γ (τ ) =
⎧⎨⎩〈π|
 T |τ | 
|1〉 if τ � 1

〈|x|2〉 if τ = 0
〈π|
 T |τ | 
|1〉 if τ � 1

, (4)
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where 
 is the |S|-by-|S| average-observation matrix defined
by:


 =
∑
s∈S

〈X 〉p(X |s)|s〉〈s|. (5)

We use the hidden-state basis in which |s〉 is the column vector
of all 0s except for a 1 at the index corresponding to state s. 〈s|
is simply its transpose. This yields a natural decomposition of
the identity operator: I = ∑

s∈S |s〉〈s|. In the hidden-state ba-
sis, then, the 
 matrix simply places state-conditioned average
outputs along its diagonal.

The power spectrum is calculated starting from Eq. (3)
together with Eq. (4), using the spectral decomposition
techniques developed for nonnormal and nondiagonalizable
operators in Ref. [68]. In the derivation it is important to
treat individual eigenspaces separately, as our generalized
framework naturally accommodates. Appendix C gives the
derivation’s full details. Qualitatively, the power spectrum de-
composes naturally into a discrete part Pd (ω) (a weighted sum
of Dirac δ functions) and a continuous part Pc(ω) (a collection
of diffuse peaks):

P(ω) = Pc(ω) + Pd (ω).

For the power spectrum’s continuous part the end result is as
follows:

Pc(ω) = 〈|x|2〉 + 2 Re〈π|
 T (eiωI − T
)−1


|1〉, (6)

where Re(·) denotes the real part of its argument.
Remarkably, all of the ω dependence is in the apparently

simple term (eiωI − T )
−1

. This is the resolvent of T along
the unit circle in the complex plane. However, and central to
our main results, this frequency dependence is filtered through
〈π|
 and 
|1〉. Notably, if the average-observation matrix
was proportional to the identity, then all frequency depen-
dence would be lost since Re〈π|(eiωI − T )

−1|1〉 = −1/2 is
independent of ω [69]. Frequency dependence of the power
spectrum thus requires that there are different averages as-
sociated with different states. Surprisingly though, none of
the structure of the conditional probability density functions
{p(X |s)}s matters for the power spectrum, except for the aver-
age value observed in each state. Structure beyond averages is
simply not captured.

D. Apparent structure

To fully appreciate the structure that is captured by the
power spectrum requires a spectral decomposition of the tran-
sition matrix. The set �T of T ’s eigenvalues is calculated as
usual. However, since transition matrices are generically non-
normal and often nondiagonalizable, the spectral projection
operators associated with T deserve a brief review.

In particular, the spectral projection operator Tλ associated
with eigenvalue λ can be defined as the residue of (zI − T )−1

as z → λ:

Tλ = 1

2π i

∮
Cλ

(zI − T )−1 dz, (7)

where z ∈ C and Cλ is a small counterclockwise contour
around the eigenvalue λ. Alternatively, the spectral projection

operators can be constructed from all left eigenvectors, gen-
eralized left eigenvectors, right eigenvectors, and generalized
right eigenvectors associated with λ. The construction is given
explicitly in Ref. [68]. In the simple case where the eigenvalue
is nondegenerate, the eigenprojector takes on the simple form:

Tλ = |λ〉〈λ|
〈λ|λ〉 .

However, the left 〈λ| and right |λ〉 eigenvectors are not
simply complex-conjugate transposes of each other, as they
would be in the normal-operator case familiar from closed
quantum systems and undirected networks. For example, the
spectral projection operator associated with stationarity—
T1 = |1〉〈π|—can be interpreted as the classical version of a
density matrix but, typically, the stationary distribution is not
uniform and so 〈π| is not proportional to the transpose of |1〉.

We will also use the broader class of spectral companion
operators:

Tλ,m = Tλ(T − λI )m. (8)

They have the useful property that Tλ,mTζ ,n = δλ,ζ Tλ,m+n.
Clearly, the spectral projection operator is contained in this
set, as Tλ = Tλ,0. It should be noted that Tλ,m = 0 for m � νλ,
where νλ is the index of the eigenvalue λ—i.e., the size of the
largest Jordan block associated with λ. One should keep in
mind that the transition matrix can be represented as:

T =
∑

λ

(λTλ,0 + Tλ,1).

While the resolvent has the general spectral decomposition:

(zI − T )−1 =
∑
λ∈�T

νλ−1∑
m=0

1

(z − λ)m+1
Tλ,m. (9)

The spectral expansion of the resolvent given by Eq. (9)
allows us to better interpret the qualitative shape of the power
spectrum Eq. (6):

Pc(ω) = 〈|x|2〉 +
∑
λ∈�T

νλ−1∑
m=0

2 Re
〈π|
 T Tλ,m
|1〉

(eiω − λ)m+1
. (10)

Note that 〈π|
 T Tλ,m
|1〉 is a complex-valued scalar and
all of the frequency dependence now handily resides in the
denominator. When T is diagonalizable, Eq. (10) reduces to:

Pc(ω) = 〈|x|2〉 +
∑
λ∈�T

2 Re

(
λ〈π|
 Tλ
|1〉

eiω − λ

)
.

The discrete (δ function) portion of the power spectrum is

Pd (ω) =
∞∑

k=−∞

∑
λ∈�T|λ|=1

2π δ(ω − ωλ+2πk) Re〈π|
 Tλ
|1〉, (11)

where ωλ is related to λ by λ = eiωλ . Equation (11) is valid
even when T is nondiagonalizable: An extension of the
Perron-Frobenius theorem guarantees that T ’s eigenvalues on
the unit circle have index νλ = 1. With T1 = |1〉〈π|, it is useful
to note that 〈π|
 T1
|1〉 = |〈x〉|2, so that the δ function at
zero frequency appears whenever the average observation is
nonzero.
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FIG. 4. Parametrized HMM of a stochastic process, its eigenvalue evolution, and two coronal spectrograms showing power spectra
emanating from eigenspectra. (a) A b-parametrized HMM with mean values of each state’s pdf 〈x〉p(X |s) indicated as the number inside each
state. (b) Eigenvalue evolution for all λ ∈ �T sweeping transition parameter b from 1 (thick blue) to 0 (thin red). (c) Power spectrum (blue
line) and eigenvalues (red dots) at b = 3/4. (d) Power spectrum and eigenvalues at b = 1/4.

When plotted as a function of the angular frequency ω

around the unit circle, the power spectrum suggestively ap-
pears to emanate from the eigenvalues λ ∈ �T of the hidden
linear dynamic. This is illustrated by the coronal spectrograms
in Figs. 4(c) and 4(d); these are discussed once the general
phenomenon is explained.

T ’s eigenvalues on the unit circle yield Dirac δ functions
in the power spectrum. T ’s eigenvalues within the unit cir-
cle yield more diffuse line profiles, increasingly diffuse as
the magnitude of the eigenvalues retreats toward the origin.
Moreover, the integrated magnitude of each contribution is
determined from the amplitude 〈π|
 Tλ
|1〉. Finally, we note
that nondiagonalizable eigenmodes yield qualitatively differ-
ent line profiles.

The spectral decomposition of the power spectrum offers
several insights into the minimal temporal structure required
to generate the observed power spectrum. In particular, since
(i) each local maxima in the power spectrum emanates from
an eigenvalue of the hidden state-to-state transition matrix and
(ii) since the number of unique eigenvalues is upper bounded
by the number of hidden states (i.e., |�T | � |S|), we have the
following result: Counting both diffuse peaks and δ functions,
the number of observed peaks in the power spectrum (from
ω ∈ (−π, π ] in the discrete-time setting) puts a lower bound
on the number of hidden states of any model capable of
generating the observed stochastic process. Note further that
all transition matrices must have an eigenvalue of unity and
that this eigenvalue can only produce a δ function at ω = 0
with no other way to shape the power spectrum over other
frequencies. This gives the immediate consequence that all
single-state HMMs (i.e., all IID processes) have a flat power
spectrum, as suggested earlier. In such cases, �T = {1}, and
there are no other eigenvalues to shape the power spectrum.

Figure 4 shows the power spectrum of a particular
parametrized family of stochastic processes. Figure 4(a)
displays the HMM’s skeleton with state-to-state transition
probabilities parametrized by b. The mean values 〈x〉p(X |s)
observed from each state are indicated as the blue number
inside each state. The process generated depends on the actual
PDFs and the transition parameter b. Although, and this is
one of our main points, the power spectrum is ignorant to the
PDFs’ details.

The evolution of the eigenvalues �T of the hidden-state
transition dynamic is shown from thick blue to thin red mark-
ers in Fig. 4(b), as we sweep the transition parameter b from
1 to 0. A subset of the eigenvalues pass continuously but
very quickly through the origin of the complex plane as b
passes through 1/2. The continuity of this is not immedi-
ately apparent numerically but can be revealed with a finer
increment of b near b ≈ 1/2. Notice the persistent eigen-
value of λT = 1, which is guaranteed by the Perron-Frobenius
theorem.

Using coronal spectrograms, introduced in Refs. [70] and
[67], Figs. 4(c) and 4(d) illustrate how the observed power
spectrum P(ω) emanates from the eigenspectrum �T of the
hidden linear state dynamic. Specifically, in Fig. 4(c) and
again, at another parameter setting, in Fig. 4(d), we show
the power spectrum P(ω) (plotted around the unit circle in
solid blue) and the eigenspectrum �T (plotted as red dots
on and within the unit circle) of the state-to-state transition
matrix for the 11-state hidden Markov chain [Fig. 4(a)] that
generates it. As anticipated from Eq. (10), the power spectrum
has sharper peaks when the eigenvalues are closer to the unit
circle. The integrated magnitude of each peak depends on
〈π|
|λ〉〈λ|
|1〉.

It is easy to verify for this example that the stationary
distribution 〈π| is uniform for any b ∈ (0, 1] and that there is
no δ function at zero frequency since the average observation
is zero. Nevertheless, as b → 1, 10 δ functions (with five dif-
ferent integrated magnitudes) emerge (per 2π band of angular
frequency) as the nonunity eigenvalues of the transition matrix
approach the points {ei2nπ/11}10

n=1 on the unit circle. At b = 1,
the power spectrum is (up to a constant offset) the same as its
discrete part: P(ω) = Pd (ω) + const, whereas for b ∈ (0, 1),
the power spectrum is diffuse and is the same as its continuous
part: P(ω) = Pc(ω).

Interestingly, our continuous power spectrum is the shadow
of the discrete eigenspectrum of nonunitary dynamics. (The
former is closely related to the continuous eigenspectrum
of unitary models of chaotic dynamics.) This suggests that
resonances in various physics domains concerned with a con-
tinuous spectrum can be modeled as consequences of simpler
nonunitary dynamics. Indeed, hints of this already appear in
Refs. [71–73].

013170-7



PAUL M. RIECHERS AND JAMES P. CRUTCHFIELD PHYSICAL REVIEW RESEARCH 3, 013170 (2021)

While we frame our main results in terms of HMMs,
in fact, they apply broadly to regularly observed physical
systems. Many physical systems have exact representations
as finite latent-state models, as in the examples of Sec. IV.
However, even when the mapping is not exact, most if not
all dynamical systems encountered in physics can be approxi-
mated to an arbitrary accuracy by either an autonomous or an
input-dependent HMM [66,74]. The eigendecomposition then
serves to re-express the physical system and its power spectrum
in its natural state space.

The interpretation for discrete-state physical systems is ob-
vious. While there are additional mathematical nuances with a
continuous state space, the overall picture remains intact [75].
Specifically, Eq. (10) (and our subsequent analysis) applies to
most dynamical systems encountered in physics—including
quantum systems represented in Liouville space [76]—since
these dynamical systems have a countable number of discrete
eigenmodes.

E. Continuous-time processes

For both simplicity and generality, we focused on discrete-
time dynamics [77]. However, correlation and power spectra
are often applied to continuous-time processes. This section
makes a more explicit connection to continuous-time pro-
cesses and points out important features.

First, continuous-time processes are typically observed not
continuously but periodically at some sampling frequency f0.
The duration τ0 = 1/ f0 between observations thus induces
a discrete-time transition operator Tτ0 between states in that
time interval. In such cases, the discrete-time transition ma-
trix is related to the continuous-time generator G of time
evolution by Tτ0 = eτ0G. Accordingly, the continuous-time
generator can be obtained from the discrete-time dynamic
via G = f0 ln Tτ0 [78]. And the eigenvalues of Tτ0 and G are
simply related by �Tτ0

= ⋃
ζ∈�G

{eτ0ζ } [79].

1. Autocorrelation and power spectra

Continuous-time representations can be analyzed directly,
though. Consider the generic case of a continuous-time dy-
namic over a hidden state-space, with two types of example in
mind:

(1) The system evolves through a continuous state-space.
This describes both typical linear and nonlinear systems,
including chaotic dynamical systems and Fokker-Planck dy-
namics. Then G is the generator that induces the finite-time
Ruelle-Perron-Frobenius operator.

(2) Or observations are functions of a finite-state space
with continuous-time transition rates. An example is current
flowing or not, depending on the conformation of a biomolec-
ular ion channel. Then G is the rate matrix of the master
equation.

These different settings have the same expression for the
autocorrelation and power spectrum. We now give these in
closed form.

For real-valued τ > 0, the autocorrelation is

γ (τ ) = 〈 X tXt+τ 〉 = 〈π|
 eτG 
|1〉. (12)

From this, we derive the continuous part of the power spec-
trum Pc( f ) with respect to frequency f ∈ R, with the result

that:

Pc( f ) = 2 Re〈π|
 (2π i f I − G)−1
|1〉. (13)

Appealing to the resolvent’s spectral expansion again allows
us to better understand the possible shapes of the power spec-
trum:

Pc( f ) =
∑
λ∈�G

νλ−1∑
m=0

2 Re
〈π|
 Gλ,m
|1〉
(2π i f − λ)m+1

. (14)

Since all of the frequency dependence is isolated in
the denominator and since 〈π|
 Gλ,m
|1〉 is a frequency-
independent complex-valued constant, peaks in Pc( f ) arise
only via contributions of the form Re c

(2π i f −λ)n for c ∈ C,
f ∈ R, λ ∈ �G, and n ∈ Z+.

2. Applications

Equation (14) helps explain the shapes of power spectra
of chaotic dynamical systems, as appeared some time ago,
e.g., in Ref. [11]. In that case, the eigenvalues of the time-
evolution operator—whether the Ruelle-Perron-Frobenius
transfer operator or the Koopman operator [80]—are known
as Ruelle-Pollicott resonances [12–14], and 〈π| is the sta-
tionary distribution on the attractor. Stochastic differential
equations leading to Fokker-Planck dynamics, ubiquitous in
statistical physics, also obey Eq. (14). In these cases, the
spectral projection operators describe the decay modes of
probability densities on the continuous state space.

Even when the exact operator for time evolution is un-
known, Eq. (14) can be used for the inverse problem of
inferring the hidden linear dynamic from data—since the
empirical power spectrum constrains the system’s eigenspec-
trum.

It should be noted, however, that power spectra obtained
either experimentally or numerically at finite sampling rate
can deviate significantly from Eq. (14) as f → f0/2. Equa-
tion (14) only describes the empirical power spectrum of
continuous-time processes for frequencies much less than the
sampling frequency such that f / f0 � 1, whereas Eq. (10)
describes the empirical power spectrum exactly over all
frequencies. The empirical power spectrum will approach
Eq. (14) over any finite frequency band as the sampling fre-
quency is increased, coinciding in the limit that f0/ f → ∞.

3. Lorentzians and 1/ f noise

When cλ ≡ 〈π|
 Gλ,0
|1〉 is real valued, then the eigen-
mode’s contribution to the power spectrum is cλ times a
Cauchy-Lorentz distribution over frequencies, centered at
f = Im(λ)/2π with full width at half maximum of Re(λ)/π .
This becomes a delta function in the limit Re(λ) → 0. It is
notable that nondiagonalizable eigenmodes contribute quali-
tatively distinct line profiles to the power spectrum.

Still one may wonder—since Eq. (14) is fully general for
continuous-time dynamics—where the commonly encoun-
tered feature of 1/ f noise could possibly originate. Inspired
by Bernamont’s 1937 insight that superposed Lorentzians can
lead to 1/ f noise [81], we can identify a source of 1/ f noise
in our more general setting.
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Definition 1. A continuous-time process has doubly har-
monic diminution if its:

(i) time-evolution generator G is diagonalizable and has
N + 1 evenly spaced eigenvalues along the real line �G =
{−na}N

n=0 for some a > 0 and
(ii) spectral intensity fades with increasing frequency ac-

cording to c−na = c/n for n � 1 and some c ∈ R.
Appendix D shows that any process with doubly harmonic

diminution produces 1/ f noise over a frequency bandwidth
proportional to N , such that:

P( f ) ∼
⎧⎨⎩constant if f < 3a/2π2

1/ f if 3a/2π2 < f � aN/4π2

1/ f 2 if f � aN/4π2
.

Note that the power spectrum’s 1/ f portion can start at very
low frequencies if a is small.

The surprising prevalence of 1/ f noise in nature can now
be reframed in light of our spectral results: Why would doubly
harmonic diminution be so common in nature? We suggest
that doubly harmonic diminution is a consequence of common
motifs of causal dependence in processes. These dependen-
cies impose structural constraints on transition rate matrices
that could characteristically shape their spectral properties.
Hopefully, this spectral reframing of 1/ f noise will stimulate
further attempts to explain its ubiquity.

F. Transducing structured noise

For certain dynamics, it is profitable to split the generator
into deterministic and random components. This is especially
useful when a linear time-invariant (LTI) system takes the
structured noise as input. Random thermal motion in a har-
monic trap is a simple example.

When a LTI system transduces structured noise—taking
process X to process Y —the output is generically a simple
transformation of the noise, modulated by the square mag-
nitude of the LTI system’s transfer function, HX→Y (ω) or
HX→Y ( f ) [82]. In discrete time the power spectrum is

PYY (ω) = |HX→Y (ω)|2PXX (ω). (15)

This requires modification, however, when the eigenvalues of
the noise coincide with the poles and zeros of the LTI system’s
transfer function.

Consider a LTI system described by polynomials P(D) and
Q(D) of either the discrete-time delay operator (i.e., DYt =
Yt−1) or the continuous-time differential operator (i.e., DYt =
d
dt Yt ) such that:

P(D)Yt = Q(D)Xt .

Then the square magnitude of the transfer function is given
by:

|HX→Y (ω)|2 = |Q(eiω )|2
|P(eiω )|2

or

|HX→Y ( f )|2 = |Q(i2π f )|2
|P(i2π f )|2

for discrete-time or continuous-time models, respectively. In
particular, Xt can be generated from a noise model that can be
any HMM type discussed here.

For example, each spatial dimension of a Brownian tra-
jectory simply integrates a white noise Xt according to the
finite-difference equation: Yt − Yt−1 = Xt . Appendix E shows
this leads to the well-known power spectrum of Brownian
noise ∼1/ f 2 in the limit of f0/ f → ∞ and gives the correc-
tion for finite sampling rates. More generally, Eq. (15) can
be used to evaluate the power spectrum from Langevin-type
differential equations that transduce arbitrarily sophisticated
noise processes.

Notably, any noise structure not revealed by Xt ’s power
spectrum PXX (ω) remains veiled by PYY (ω) after passing
through any LTI system. This begs the question of what has
been hidden.

III. HIDDEN STRUCTURE

In fact, quite a lot is hidden. Remarkably, the power
spectrum generated by any hidden-Markov process with con-
tinuous random variables for the state observables is the same
as that generated by a potentially much simpler process—one
that is a function of the same underlying Markov chain that
instead emits the expectation value of the state observable.

Theorem 1. Let P = {p(X |s)}s∈S specify any state-paired
collection of probability density functions over the do-
main A ⊆ C. Let B = {〈X 〉p(X |s)}s∈S and let Q = {δ(X −
〈X ′〉p(X ′|s) )}s∈S . Then the power spectrum generated by any
hidden Markov model M = (S,A,P, T ) differs at most by
a constant offset from the power spectrum generated by the
hidden Markov model M′ = (S,B,Q, T ) that has the same
hidden Markov chain but in any state s ∈ S emits, with prob-
ability 1, the state-conditioned expected value 〈X 〉p(X |s).

Proof. From Eqs. (6) and (11), we see that Pc(ω) +
Pd (ω) − 〈|x|2〉 depends only on T and {〈X 〉p(X |s)}s∈S . Thus, all
HMMs sharing the same T and {〈X 〉p(X |s)}s∈S have the same
power spectrum P(ω) = Pc(ω) + Pd (ω), modulo a constant
offset determined by differences in 〈|x|2〉.

Figure 5 demonstrates Theorem 1 for the power spectrum
in Fig. 4(c).

One immediate consequence is the following.
Corollary 1. Any hidden Markov chain with any arbitrary

state-paired collection of zero-mean distributions, i.e.:

P ∈ {{p(X |s)}s∈S : 〈X 〉p(X |s) = 0 for all s ∈ S},
generates a flat power spectrum indistinguishable from white
noise.

Proof. This follows immediately from Theorem 1 and the
fact that the all-zero sequence has a power spectrum that is
zero everywhere. Thus, the corresponding power spectrum
of the actual process is a flat (nonzero) power spectrum of
uniform height 〈|x|2〉.

We can relax the corollary to include cases where the
state-conditioned PDFs are all equal to a potentially nonzero
constant. Although, a δ function at zero frequency (of in-
tegrated magnitude equal to the square magnitude of the
constant) will then be observed in addition to the flat power
spectrum.
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FIG. 5. Demonstrating Theorem 1 for the processes generated by
the HMM skeleton of Fig. 4(a), using transition parameter b = 3/4
as in Fig. 4(c). Besides an overall constant offset of 〈|x|2〉, the power
spectrum is insensitive to all details of the state-conditioned PDFs
except for their averages. On top of the theoretical curve (thick gray)
given by Eq. (6) we overlay horizontal offsets of the power spectra
calculated numerically for stochastically generated time series. The
state-conditioned PDFs used to define the different stochastic pro-
cesses are as follows: (i) single δ functions, (ii) single Gaussians,
(iii) two symmetrically spaced δ functions (with no support at the
mean), and (iv) weighted δ functions with asymmetric spacing. For
each, a time series of length 218 was generated. The Welch method
was used to calculate the average power spectrum for each process
using FFTs of segments of length 29. The inset shows the raw power
spectrum for each process without the offset.

The corollary’s implications are striking. It is quite surpris-
ing, to consider one broad class of examples, that a power
spectrum can be completely flat even when a ring of sequential
states are visited that emit observables with probability den-
sity functions having no overlapping support. Figure 6 gives
an example. In such a case, any cogent observer immediately
detects the obvious structure in the mismatched supports—
observed values are distinct—and forbidden realizations. Yet
the power spectrum remains silent about this structure, report-
ing only the featureless signature of white noise.

In other more challenging settings, structure is not always
so obvious without a reliable aid. Indeed, structure becomes
increasingly difficult to detect (by any means) when the state-
conditioned probability density functions have overlapping
support. This is the generic case of non-Markovian processes.
The hidden states cannot be detected via casual inspection.

While they give a concrete sense of missing structure, these
cases fall far short of telling the full story of how power
spectra mask structure. The following sections, culminating
in Theorem 2, address additional ways white noise appears
without needing to meet the requirements of Corollary 1.

A. Nonlinear pairwise correlation

In a sense, the structure of the stochastic process in Fig. 6
was hidden as shallowly as possible to evade appearing in

FIG. 6. Demonstrating Corollary 1 on the noisy phase-slip pro-
cess: The overtly structured stochastic process generated by the
HMM (inset) has a flat power spectrum for all values of the phase-
slip transition parameter p ∈ [0, 1]. The flat power spectrum is shown
analytically (thick gray) and numerically (thin blue) for p = 1/10.
The numerical power spectrum was calculated from a simulated time
series of length 220 using the Welch method, performing FFTs on
segments of length 29.

the power spectrum. As mentioned, the structure should be
trivial to detect by other means. Indeed, while the linear
pairwise correlation γ (τ ) vanished for all τ > 0, there is still
pairwise dependence between the generated random variables,
which is nonlinear. This pairwise dependence can be teased
out using the pairwise mutual information I (X0; Xτ ) between
observables at different times [83]. For the process of Fig. 6,
if we take the limit of the narrow Gaussians in the state-
conditioned PDFs to be pairs of δ functions, then the pairwise
mutual information can be calculated exactly as shown in
Appendix L. In fact, I (X0; Xτ ) will be unchanged for any set of
four PDFs we could have chosen for the states of the example
HMM, as long as the PDFs all have mutually exclusive sup-
port for the observable output. (This then makes the hidden
state a function of the instantaneous observable.)

A concise summary of the pairwise mutual information
is provided via Ref. [67]’s power-of-pairwise-information
(POPI) spectrum:

I (ω) = −H (X0) + lim
N→∞

N∑
τ=−N

e−iωτ I (X0; Xτ ),

where H (·) is the Shannon entropy of its argument [83].
Examining the pairwise mutual informations and the POPI
spectrum for this example (see Figs. 14 and 15), we find the
decay of pairwise information to scale intuitively with the
phase-slip-parameter p. While Fig. 6’s example has no linear
correlation, nevertheless it does have pairwise structure. Thus,
the structure of the example process was hidden from power
spectra, but not hidden from the POPI spectrum.

The following sections continue investigating temporally
structured processes but focus on those with no linear pairwise
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correlation (and so a flat power spectrum) and no pairwise
mutual information (and so a flat POPI spectrum). These will
lead us to introduce a general condition for flat power spectra.
And, since power spectra fail so often to detect structure, we
turn from criticizing them to being constructive: introducing
ways to detect hidden structure.

B. Sophisticated fraudulent white noise

Theorem 1 established that the power spectrum from pro-
cesses with continuous observable random variables is the
same as the power spectrum from much simpler correspond-
ing processes with discrete observable random variables.
Accordingly, Theorem 1 motivates studying the power spectra
of processes with discrete observable random variables to
determine if there are further ways to achieve a flat power
spectrum, beyond Corollary 1’s possibilities. For observables
that are discrete random variables, it is sufficient to consider
their probability distributions rather than their probability
density functions.

We begin this next step of the development by establishing
the following simple lemma:

Lemma 1. Any stochastic process (not necessarily station-
ary) with the single-condition-independent property (SCIP):

Pr(Xt |Xt ′ = x) = Pr(Xt ) = Pr(Xt ′ ),

for all x ∈ A and all t 	= t ′, generates a flat power spectrum,
mimicking white noise.

Proof. See Appendix F.
SCIP processes not only have a flat power spectrum but

also a flat POPI spectrum. SCIP implies I (X0; Xτ ) = 0 for
all τ 	= 0 which, in turn, implies I (ω) = 0. These processes
completely lack any pairwise correlation, whether linear or
nonlinear.

Notably, Lemma 1 is not covered by Corollary 1, nor is
Corollary 1 subsumed by Lemma 1. Accordingly, the fol-
lowing develops a single simple condition (culminating in
Theorem 2) that covers all of these cases of fraudulent white
noise.

Crucially, the class of potentially fraudulent-white-noise
processes suggested by Lemma 1 is nontrivial. In addition to
IID processes, this class includes non-Markovian processes
that hide all of their structure beyond pairwise correlations.

The random-random-XOR process (RRXOR), discussed
at length in Ref. [67], is an example. Over blocks of length
3, the first two bits are generated randomly from a uniform
distribution and the third bit is then the logical XOR operation
of the last two. Explicitly:

X3n+φ = XOR(X3n−2+φ, X3n−1+φ ), whereas

X3n−2+φ ∼ (
1
2 , 1

2

)
and

X3n−1+φ ∼ (
1
2 , 1

2

)
,

for all n ∈ {1, 2, . . . }. As a SCIP process, the RRXOR process
has a flat power spectrum although it does not fall under the
purview of Corollary 1. Indeed, the RRXOR process has no
pairwise correlation at all since I (X0; Xτ ) = 0 for all τ > 0.
Accordingly, the POPI spectrum is zero over all frequencies.
The structure in this process is strictly three-way correlation.
In Ref. [67], the phase φ itself is a random variable, and

synchronizing to the phase is a surprisingly difficult task [84].
No matter whether the phase φ is given, the process has
no pairwise correlation—resulting in a flat power spectrum
and flat POPI spectrum—and only reveals correlation in its
three-way structure.

It is interesting to note that the related RRXNOR process,
where X3n = XNOR(X3n−2, X3n−1), also has a flat power spec-
trum. In fact, this suggests a new method to hide structure:
embed a correlated message into a sequence of RRXOR and
RRXNOR 3-bit sequences that lifts all correlation beyond
pairwise. Specifically, the original message is transformed
into a sequence of choices about whether to use XOR or
XNOR on the previous two random bits. As long as the read
frame and the embedding mechanism is known, the message
can be easily extracted. But if it is not known that a message
is embedded, then it cannot be detected simply by looking for
pairwise correlations.

Through similar construction, structure can be shifted up to
arbitrarily high orders of correlation. Stochastic processes can
be constructed with N-way correlation but no n-way correla-
tion for all n < N . Moreover, an arbitrarily correlated message
can be embedded within such a process, such that its structure
is lifted beyond any desired order of correlation.

C. Content-preserving whitening

Corollary 1 gave a method to construct an arbitrarily com-
plex process with a truly flat power spectrum, so long as
all hidden states have the same average output. Here, we
introduce an alternate method to construct arbitrarily complex
processes with truly flat power spectra. These processes, in
addition, are devoid of n-way correlation for all n < N .

(1) Choose an embedding block length N � 3.
(2) Choose any stochastic process (“Process A”) with a

binary output alphabet.
(3) Construct “Process B” as follows:
(a) Whenever Process A would produce a 0, Process B will

sample a word uniformly from the set of all words of length
N with an even number of 1s.

(b) Whenever Process A would produce a 1, Process B will
sample a word uniformly from the set of all words of length
N with an odd number of 1s.

Any Process B constructed in this manner has a truly flat
power spectrum. Process B will also be devoid of n-way
correlation for all n < N . Moreover, if A is a stationary pro-
cess such that its statistical complexity Cμ(A) is well defined
[85,86], then Process B is also a stationary process with
Cμ(B) � Cμ(A).

This also works for “infinitely structured” processes, those
with divergent statistical complexity. Choose any binary
Process-A family with Cμ → ∞. This can be, for example,
Ref. [87]’s heavy-tailed periodic mixture process that has
infinite past-future mutual information: E → ∞. Then add
some structure, via content-preserving whitening, to obtain a
binary Process-B family with Cμ → ∞ and a truly flat power
spectrum.

Similar constructions can also be developed for processes
with larger alphabets.

Through the lens of pairwise correlation, such structure
is simply missed. However, before moving on to consider

013170-11



PAUL M. RIECHERS AND JAMES P. CRUTCHFIELD PHYSICAL REVIEW RESEARCH 3, 013170 (2021)

.

S1 S2 S3

X1 X2 X3

Hidden message and embedding protocol . . .

FIG. 7. Bayesian network for memoryful input-dependent
generators.

more advanced methods to detect such structure, we finish our
investigation of flat power spectra from structured processes.
The next section addresses a broad class of possibly-input-
dependent process generators and we give a very general
condition for when a flat power spectrum results.

D. Input-dependent generators and fraudulent white noise

Probing fraudulent white noise more broadly, consider
an arbitrarily correlated message �m and an input-dependent
generator M( �m) of an observable output process {Xt }t∈T .
The lengths of the inputs and outputs need not be com-
mensurate, and the input and output alphabets may also be
distinct. The generator is fully specified by the tuple M( �m) =
(S,A,P, {Tt ( �m)}t ,μ1). That is, the internal states S, output
alphabet A, and state-dependent PDFs P are static. However,
the hidden-state-to-state transition matrix Tt ( �m) at time t is
potentially a function of the full input �m. Since stationarity
is no longer assumed, the initial distribution μ1 over hidden
states must be specified for the statistics of the output process
to be well defined.

Figure 7 shows the relevant Bayes network for this general
type of input-dependent generator. Contrast this with Fig. 3,
which showed the Bayes network of autonomous HMM gen-
erators. Autonomous HMMs can be seen as a special case of
these possibly-input-dependent generators when the process
M( �m) = M is input independent and the initial distribution
μ1 = π is taken to be the stationary distribution 〈π| = 〈π|T
of the time-independent transition matrix Tt ( �m) = T .

The memoryful input-dependent generators we now con-
sider also generalize the memoryful transducers introduced
in Ref. [88] to use continuous-variable outputs and allow the
lengths of input and output to be incommensurate. Via any of
the above models, very general message-embedding schemes
can be developed that produce sophisticated fraudulent white
noise.

Even with all the generalizations, we can determine auto-
correlation and power spectra. Similarly to the derivation for
HMMs, we find that if the process is wide-sense stationary,
then (for τ � 1):

γ (τ ) = 〈μt |
 Tt :t+τ ( �m) 
|1〉, (16)

which must overall be t-independent (so long as t � 1). Here
〈μt | = 〈μ1|T1:t ( �m) and Ta:b( �m) = ∏b−1

t=a Tt ( �m), and 
 is again
given by Eq. (5). [Notice that Ta:a+τ ( �m) = T τ for the special
case of autonomous HMMs.]

Thus, autocorrelation for τ � 1 can be calculated as
〈μ1|
 T1:1+τ ( �m) 
|1〉, assuming that the pairwise statistics are
stationary. This can also be written as:

γ (τ ) = 〈〈x〉p(X |St )〈x〉p(X |St+τ )

〉
Pr(St ,St+τ ), (17)

where we treat 〈x〉p(X |St ) as a random variable that depends on
St and the whole expression becomes t-independent assuming
stationary pairwise statistics. Accordingly, the autocorrelation
function is constant and the power spectrum is flat whenever:

Pr
[〈x〉p(X |St+τ )|St = s

] = Pr
[〈x〉p(X |St+τ )

] = Pr
[〈x〉p(X |St )

]
,

for all τ , for all t ∈ T , and for all s ∈ S.
However, this requirement is too strict to cover all cases

of interest. For example, it does not yet imply the flat power
spectrum of the RRXOR process. More generally, constant
autocorrelation and flat power spectra can be guaranteed by
an even weaker condition.

To appreciate this, define the set � of average outputs emit-
ted by the states: � ≡ ⋃

s∈S{〈x〉p(X |s)}. Furthermore, we define
Sξ ⊂ S as the set of states that all emit the same average
output ξ ∈ �. Explicitly, Sξ ≡ {s ∈ S : 〈x〉p(X |s) = ξ}. Using
these entities, we can state our result more precisely as the
following theorem.

Theorem 2. Let {Xt }t be a stochastic process generated by
any of the hidden-state models M( �m) discussed above, in-
cluding autonomous HMMs and input-dependent generators,
Xt the random variable for the observable at time t , and St the
random variables for the hidden state at time t . Such processes
have constant autocorrelation and a flat power spectrum if:

Pr(St+τ ∈ Sξ ′ |St ∈ Sξ ) = Pr(St+τ ∈ Sξ ′ ) = Pr(St ∈ Sξ ′ ),

for all separations τ > 0, for all t ∈ T , and for all ξ, ξ ′ ∈ �.
Proof. See Appendix G.
Theorem 2 says that a flat power spectrum results whenever

the average output of the future hidden state is independent of
the average output of the current hidden state.

This generalized condition for flat power spectra cov-
ers the special case for HMMs as well as fraudulent white
noise from message-embedding schemes with stationary
pairwise statistics, but nonstationary high-order statistics.
Appendix M shows that a modified version of Theorem 2 also
applies to another class of generators that can be more natural
for measured quantum systems and systems with computa-
tional dependencies. Theorem 2 subsumes Corollary 1 as well
as Lemma 1. And, it offers the most general guarantee yet for
constant autocorrelation and flat power spectrum.

By way of contrast consider the following. While zero
pairwise mutual information is always a sufficient condition
for flat power spectrum, it is not a necessary condition. Here,
in Theorem 2, we find a very general condition for a flat
power spectrum. Appendix N established a related theorem
(Theorem 5) that further generalizes the condition for flat
power spectra, allowing for time-dependent PDFs associated
with each state. Moreover, Theorems 2 and 5 construc-
tively suggest how to design such processes. Notably, these
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generalized conditions do not require a stationary dynamic
over the hidden states of the observation-generating mech-
anism, which furthermore allows messages to hitchhike
undetected aboard fraudulent white noise.

More broadly, we may ask when two processes generate
the same power spectrum, whether or not it is flat.

Theorem 3. Let {Xt }t and {Yt }t be two stochastic processes
generated by any of the hidden-state models M( �m) discussed
above, including autonomous HMMs and input-dependent
generators, Xt and Yt the random variables for the observables
at time t , and St ∈ S and Rt ∈ R the random variables for
the respective hidden states at time t . These processes have
identical power spectra, up to a constant offset, if:

Pr(St ∈ Sξ ,St+τ ∈ Sξ ′ ) = Pr(Rt ∈ Rξ ,Rt+τ ∈ Rξ ′ ),

for all separations τ > 0, for all t ∈ T , and for all ξ, ξ ′ ∈ �.
Proof. See Appendix H.
Section IV B below leverages Theorem 3 to determine

the degeneracy of diffraction patterns from distinct physical
structures.

This suite of results emphasizes our main argument’s
generality: Power spectra are mute when detecting a broad
range of observable structure. Whether observing physical,
biological, or social systems, we seek structure that reveals
mechanism and begets predictability. Through the lens of
power spectra, or pairwise correlation more generally, much
structure is simply missed. The challenge then is to look for
structure beyond pairwise. Section V addresses this challenge
shortly. First, though, to motivate the extra effort, we show
that fraudulent white noise is indeed a feature of real physical
systems.

IV. HIDDEN PHYSICAL STRUCTURE

To ground the theoretical consequences in natural, even fa-
miliar phenomena, this section takes on three rather disparate
physical systems. It draws out important physical implications
of fraudulent white noise and power spectral degeneracy in
quantum entanglement, chaotic crystallography, and neural-
membrane ion channels.

A. Fraudulent white noise from quantum entanglement

Correlated measurements of entangled quantum systems
indelibly confirmed the reality of nonlocal physical states. In
particular, Bell tests conclusively showed that no local hidden
variable theory is consistent with certain strongly correlated
observations [89–91]. Detecting correlation in more general
quantum states should similarly yield a deeper appreciation
of quantum correlation’s important role in everything from
thermodynamics [92] to gravity [93,94]. But what if our tools
mask correlations?

Entangled many-body systems, as it turns out, easily
generate fraudulent white noise when they are measured.
The following demonstrates that repeated measurements of
even quite simple entangled states leads to fraudulent white
noise. As a consequence, one is at risk of inadvertently
inferring randomness where there is essential correlation.
Recognizing these high-order correlations in fraudulent white
noise, in contrast, could reveal the ubiquity of entangle-

ment naturally induced in the time evolution of physical
systems.

As a particular example, consider the entangled three-body
quantum state:

|�〉 ≡ 1
2 (|000〉 + |011〉 + |101〉 + |110〉),

where, for example, |011〉 = |0〉A ⊗ |1〉B ⊗ |1〉C. The quan-
tum circuit diagram:

H •
H •

}
|Ξ〉

shows that |�〉 is directly generated by a sequence of two
Hadamard gates and two controlled-NOT gates applied to
the unentangled state |000〉. Recall that the Hadamard gate
HA maps |0〉A to |+〉A ≡ (|0〉A + |1〉A)/

√
2. (Reference [45]

may be consulted for further explanation of these standard
elements of quantum circuit diagrams.)

When measured in the computational basis of 0s and 1s,
repeated preparation and measurement of |�〉 states leads
exactly to the RRXOR process discussed above, as the
reader can directly verify [95]. This quantum preparation
and measurement setup is shown explicitly in Fig. 8(d).
Certainly, observations contain predictable correlations. A
pairwise analysis of the observation sequence, however, gives
the statistics of white noise. This holds whether the analysis
used either power spectra or POPI spectra or, indeed, any
analysis that can be performed in one-on-one meetings among
Alice, Bob, and Charlie, who each hold one of the component
qubits.

Figure 8 compares additional examples of stochastic
processes generated by fixed measurement of unitarily trans-
formed blank quantum inputs [96]. Panel 8(a) reminds us
that almost any measurement of a quantum system yields
some randomness. The amount of uncertainty, though, de-
pends on how well the measurement basis aligns with
the system’s quantum state. However, Panel 8(b) reminds
us that local properties of a maximally entangled state
are maximally unpredictable, regardless of the local mea-
surement basis. The entire structure of a maximally en-
tangled state exists only nonlocally among constituents,
yielding correlations when measurements on different parts
of the system are compared—as in the Bell process of
Fig. 8(c).

When the number of entangled parties is larger than two,
correlation becomes much harder to detect. Nevertheless, in
each case the physical input, unitary transformation, and mea-
surement protocol together determine the HMM that exactly
describes the correlated output process. Figure 8(d) shows
how fraudulent white noise in the form of the RRXOR pro-
cess can arise from measurements of entangled three-bodied
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quantum systems. Moreover, adding two swap gates:

H • X1

H • × X2

×× X3

H • X4

H • × X5

X6

transforms the output into the even more cryptic Interlaced
RRXOR process, discussed shortly in Sec. V B.

These constructions demonstrate that simple sequences of
two-body interactions can generate high-order correlations
while revealing no low-order correlation whatsoever.

B. Silent crystals

Many icons of natural structure ensue from the atomic
placements encoded in crystals. Semiconductor crystal struc-
tures tell electrons and light how to move within them, while
the aperiodic crystals of our genetic script instruct our cells
how to behave. The typical way to probe crystal structure is
x-ray diffraction—the power spectrum of a crystal’s electron
density. Thus, the preceding results on the degeneracy of
power spectra highlight which features of crystal structure can
be inferred from diffraction patterns.

Close-packed structures, which mimic the dense pack-
ing of hard spheres, offer an interesting case study due to
their multiplicity and natural abundance [103,104]. All close-
packed structures are composed of modular layers {A, B, C},
with a material-dependent basis attached to a two-dimensional
(2D) hexagonal crystal lattice. Assembling these modular lay-
ers, there are two choices for how to nestle the next layer to
fill the holes as tightly as possible. For a particular material,
differences in diffraction patterns arise from this sequence of
stacking choices [70,105–107].

Besides the ABABAB. . . period-two stacking of close-
packed two-dimensional monolayers that leads to hexagonal
close packing (hcp) and the ABCABC. . . period-three stack-
ing of these monolayers that leads to cubic close packing
(ccp), there is an infinite number of ways to stack the mono-
layers as tightly as possible. The only constraint is the stacking
rule that no layer (whether A, B, or C) can appear twice
in succession. Nature, it turns out, is fully aware of all the
possibilities.

For close-packed materials, the net energy from nearest-
neighbor interactions is indifferent to which of the infinitely
many close-packed structures is realized. This facilitates
great diversity, in both natural and fabricated materials, via
polytypism and random stacking [108]. Prominent examples
of polytypic layered structures include SiC, ZnS, stacked
graphene, and ice [109]. Different polytypes of the same mate-
rial can have very different electronic, optical, and mechanical
properties [110].

1. Diffraction theory of layered structures

Appendix A reviews the basics of diffraction theory and
shows that the diffracted intensity (as a function of the scat-
tering vector �q) can be written as a power spectrum of layer
form factors Xn = F (n)(�q) ∈ C. Each layer form factor is the
Fourier transform of the spatially-extended scatterer density
(e.g., the electron density) associated with the layer. In partic-
ular, the expected diffracted intensity can be written as:

〈Idiff(�q)〉 = cNP(ω) = c

〈∣∣∣∣∣
N∑

n=1

F (n)(�q)e−iωn

∣∣∣∣∣
2〉

, (18)

where ω = τ0 �q · �̂ quantifies the change in wave number along
the stacking direction �̂ of N sequential layers of thickness τ0.

For typical layered structures, there is only a small number
of layer types. For close-packed structures, to take one ex-
ample, each layer realizes one of only three allowed relative
offsets in its plane. Yet, in detail, we know that each layer
type is subject to both thermal fluctuations and quantum un-
certainty of atomic positions. What are the consequences for
the diffraction pattern?

Suppose there is a hidden-state model M( �m) =
(S,A,P, {Tt ( �m)}t ,μ1) that generates the correct statistics of
the layer form factors in the material—taking the stochastic
stacking process, thermal motion, and quantum uncertainty
into account. Theorems 1 and 3 imply that—up to a
constant offset—the diffraction pattern will be the same
if we instead consider the much simpler hidden-state model
M′( �m) = (S,B,Q, {Tt ( �m)}t ,μ1) that outputs only the
expected layer form factor from each hidden state.

Appendix A 1 shows that this allows us to easily and rig-
orously produce the surprising results of Debye-Waller theory
for exactly periodic lattices in the general setting of randomly
stacked structures. Specifically, the state-conditioned expec-
tation value of the form factor directly leads to the Debye-
Waller factor that exponentially suppresses the intensity of the
diffraction pattern at large magnitude of the scattering vector.
Surprisingly, however, thermal and quantum fluctuations do
not lead to broadening of the diffraction pattern.

For close-packed structures, there are only three types of
layers, differing only via relative displacements of 1/3 of a
lattice-translation vector in the plane of the layer. As a result,
if type-A layers have an expected layer form factor of A = ψ ,
then the other layer types are simply related by the third roots
of unity:

A = ψ, B = ψei2π/3, and C = ψe−i2π/3.

(See Appendix A 2.) The three possible state-conditioned
expectation values for the layer form factors serve as the
alphabet B = {A, B,C} for the stacking process {Xn}n, where
n indexes the layer and adjacent layers are separated by a
distance of τ0. The diffracted intensity from any close-packed
structure is then given by the power spectrum of the stacking
process.

Information about the stacking process is most directly
revealed via P(ω)/|ψ |2 wherever |ψ |2 is nonzero, which dis-
counts the expected diffraction pattern of a single layer [111].

Traditional crystals are described by periodic patterns.
Much more generally, crystal structure can be defined by
the stochastic process that generates it. (Traditional crystals,
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FIG. 8. Stochastic processes generated by fixed measurements of unitarily transformed blank quantum inputs. These include the following:
(a) measurement-basis-dependent genuine white noise, (b) measurement-basis-independent uniform white noise, (c) a correlated Bell process,
and (d) entanglement-enabled fraudulent white noise. Dashed boxes are drawn around the entangling unitary modules in each case, except (a),
where there is no entanglement. The induced Mealy-type HMMs shown on the right are the minimal descriptors of the output process. The
edge label “x : q” on the transition from state s to s′ indicates the joint probability Pr(Xt = x,St+1 = s′|St = s) = q of observing x ∈ A and
transitioning to s′, given the current state s. Mealy-type HMMs are a simple case of the more general measurement feedback models discussed
in Appendix M.

then, are the special case in which the stochastic stacking
process is deterministic and periodic.) For close-packed struc-
tures layered according to a stochastic process that can be
expressed by a hidden Markov model, our results imply that
the diffraction spectrum is intimately related to the HMM’s
eigenspectrum.

2. Random stacking example

Both hcp and ccp crystals are described by very simple
deterministic Markov models. More generally, crystal struc-
ture can integrate both features of randomness and features
of determinism. Moreover, the randomness need not be sim-
ply statistically independent errors (possibly, faults) in an
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FIG. 9. Parametrized HMM that generates a family of stochastic stacking processes (top left) and the diffracted intensity P(ω)/|ψ |2 at
different values of the faulting parameter p. Plotted as coronal spectrograms, it is clear that the diffraction spectrum emanates from the
eigenspectrum of the HMM that generates the crystal.

otherwise periodic parent crystal. Rather, the randomness it-
self can have a rich causal architecture.

As a first example, consider the p-parametrized family of
stochastic stacking processes depicted in Fig. 9. For p = 1,
we recover the deterministic period-two hcp structure. The
period-two nature is reflected in the Bragg reflection at ω =
π . For p = 0, we recover the deterministic period-three ccp
structure. The period-three nature is reflected in the Bragg
reflection at ω = 2π/3. For other values of p, the structure
is described by a stochastic stacking process.

For any p, the transition matrix and average-observation
matrix are as follows:

T =
⎡⎣0 1 0

p 0 1 − p
1 0 0

⎤⎦ and 
 =
⎡⎣A 0 0

0 B 0
0 0 C

⎤⎦,

respectively. The transition-matrix eigenvalues are �T =
{1, − 1

2 ±
√

p − 3
4 }. The transition matrix is diagonalizable

unless p = 3/4, where it becomes nondiagonalizable.
For p 	= 3/4, each spectral projection operator is given

by Tλ = |λ〉〈λ|, with 〈λ| = 1
3λ2−p [λ 1 λ2 − p] and |λ〉 =

[λ λ2 1]
�

, where � denotes transposition. Recall that
the stationary distribution is the left eigenvector 〈π| = 〈1| =

1
3−p [1 1 1 − p]. From these elements, we can calculate

〈π|
 Tλ
|1〉 and the diffracted intensity analytically as a
function of the transition parameter p. Appendix I gives the
calculation details.

a. Bragg reflections without periodicity. For p ∈ (0, 1), the
transition matrix T only has a single eigenvalue on the unit cir-
cle, so the discrete (Bragg) spectrum has a single contribution
from the eigenvalue of unity:

Pd (ω) = 2π p2|ψ |2
(3 − p)2

∞∑
�=−∞

δ(ω+2π�).

It is interesting that this Bragg reflection persists despite the
lack of any long-range deterministic periodicities for p ∈
(0, 1). This rather reflects a different type of long-range order:
the persistent imbalance of layer types within each realization
of the stochastic stacking process. More generally, Bragg re-
flections can be attributed to statistical symmetry breaking.
Deterministic periodicities are but one special case.

b. Diffuse spectrum. There is a diffuse contribution to the
power spectrum for all p ∈ (0, 1). For p ∈ (0, 3/4) ∪ (3/4, 1),
this contribution is as follows:

Pc(ω) = |ψ |2
[

1 − p2

(3 − p)2

]
+

∑
λ∈�T \{1}

2 Re
〈π|
 Tλ
|1〉

eiω/λ − 1
.

However, the expanded expressions are significantly different
for p > 3/4, where all eigenvalues are real valued and distinct,
and for p < 3/4, where two of the eigenvalues are complex
conjugate pairs.

c. Nondiagonalizable diffraction profiles. At p = 3/4, the
transition matrix of the stochastic stacking process becomes
nondiagonalizable. Curiously, this nondiagonalizability is a
generic feature of parametrized transition matrices at the
point where real eigenvalues collide and interact to gain
complementary imaginary components. That is, nondiago-
nalizability marks the onset of new behavior. In this case,
nondiagonalizability marks the transition from primarily
period-2 to primarily period-3 behavior. This critical point
of nondiagonalizability is accompanied by a qualitatively
distinct diffraction profile—no longer exhibiting the typical
Lorentzian line profile. Observing such a line profile exper-
imentally indicates a material at the crossroads of structural
transformation.

3. Degenerate diffraction patterns

Our general results on the degeneracy of power spec-
tra directly bear on the degeneracy of diffraction patterns
from different crystals. The enhanced understanding of this
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contains
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FIG. 10. Diffraction pattern (overall figure) consisting of a white
noise background with two Bragg reflections per 2π change of
angular frequency along the stacking direction. This pattern will
be observed from infinitely-many distinct stochastic processes that
generate close-packed structures. The flat diffraction pattern is given
analytically (thick gray) by Eq. (19). We verify numerically that this
diffraction pattern is observed from a crystal stacked according to the
simple stochastic process of panel (a) (thin blue). The same diffrac-
tion pattern results from the stochastic processes of panels (b) (thin
cyan) and (c) (thin green) that have distinct nontrivial higher-order
correlations. And, the same diffraction pattern results also from a
crystal that contains the information needed to faithfully reconstruct
the entire contents of the present manuscript. (d) To demonstrate this,
we extracted an extended excerpt from the manuscript, converted the
text to binary ASCII, and then converted each binary character to
six layers of the crystal—sampled from process-(b) if 0 and sampled
from process-(c) if 1, starting in the central A state each time. The
corresponding diffracted intensity is shown in thin red, coinciding
with the others.

degeneracy, in turn, sheds new light on the well-known diffi-
culty of the inverse problem of discovering crystal structure
from diffraction patterns [112].

Consider a chaotic crystal with a stochastic stacking
process described by the simple HMM shown in Fig. 10(a).
The transition-matrix eigenvalues are �T = {0,±1}.
Appendix I 2 shows that 〈π|
 T1
|1〉 = 1

16 |ψ |2 and
〈π|
 T−1
|1〉 = 9

16 |ψ |2. The resulting diffraction pattern
consists of a flat “white noise” background:

Pc(ω) = 3
8 |ψ |2,

together with two Bragg reflections per 2π of angular-
frequency bandwidth:

Pd (ω) = π |ψ |2
8

∞∑
�=−∞

[δ(ω+2π�) + 9δ(ω−π+2π�)].

The exact same diffraction pattern, however, results from
an infinite number of distinct and arbitrarily complex stochas-
tic stacking processes. In these cases, the flat diffraction
background—a fraudulent white noise—belies the material’s
sophisticated correlated structure.

For example, the HMMs shown in Figs. 10(b) and 10(c)
each contain nontrivial high-order correlation between layer
types. However, each produces the same diffracted intensity
as before:

P(ω) = 3

8
|ψ |2 + π |ψ |2

8

∞∑
�=−∞

[δ(ω+2π�)+9δ(ω−π+2π�)].

(19)

As another example that helps to drive home the point, a
binary encoding of the entire contents of this manuscript can
be stored in the stacking sequence of a close-packed crystal
with exactly the same diffraction pattern as Eq. (19). In fact,
any sufficiently long binary sequence can be encoded in a
crystal with this diffraction pattern.

To construct this crystal, each 0 is mapped to one of the
layer sequences in

L0 = {ABABAB, ABACAC, ACABAC, ACACAB}
with equal probability, while each 1 is mapped to one of the
layer sequences in

L1 = {ABABAC, ABACAB, ACABAB, ACACAC}
with equal probability. This is equivalent to applying six it-
erations of the transition dynamic of Fig. 10(b) for each 0
and then applying six iterations of the transition dynamic of
Fig. 10(c) for each 1, starting in the central A state each
time. Theorem 3 guarantees that the diffraction pattern of
the resulting crystal is always given by Eq. (19). This is
demonstrated in Fig. 10. Diffracted intensity is completely
blind to these correlated binary messages, but the original
binary message can nevertheless be recovered by other means
[e.g., via scanning tunneling microscopy].

A similar story can be told for our human genome—
our DNA is the prototypical “aperiodic crystal” [113]. Its
diffraction pattern allowed scientists to uncover its general
double-helix structure [27–30]. However, the particular con-
tent encoded by the DNA can only be extracted by more
refined structure-detection methods—carried out by a team of
cooperative enzymes in vivo.

To summarize our view of diffraction spectra for chaotic
crystals, we showed that (i) state-conditioned expectations of
layer form factors simplify diffraction analyses, (ii) Bragg
reflections persist in close-packed structures without periodic
order, (iii) nondiagonalizability heralds structural transforma-
tion and yields qualitatively distinct line profiles, and (iv) an
infinite number of arbitrarily complex crystal structures all
produce the same flat diffraction pattern (plus two Bragg re-
flections). These lessons supplement a growing awareness of
the diversity of “order” in solid-state physical systems—order
beyond what can be described by Patterson autocorrelation
functions and diffraction patterns [109,114,115].

C. Which ion-channel features do power spectra capture?

Voltage-gated ion channels embedded in cellular mem-
branes are the engines that propagate signals among cells—
coordinating electrical communication in our brains, hearts,
and throughout our bodies. Better understanding the dy-
namics among the macromolecular conformations of these
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ion channels allows a better understanding of biological
function, malfunction, and possible intervention. However,
the ion channel conformations cannot be observed directly.
Rather, it is only possible to observe a function of the
hidden conformational state—whether the instantaneous con-
formation allows current to flow or not. This non-Markovian
observable makes the inverse problem (of inferring the dy-
namic over hidden conformational states) a difficult task
[116,117].

Fortunately, a large body of investigation over many
decades elucidated the biology of ion channels [118–121].
Nevertheless, questions remain about how the measured
power spectral features, like 1/ f noise, arise in electrical
measurements of ion channels. Does it derive from the confor-
mational switching dynamics? Is it from current fluctuations
in a particular conformation? If only power spectra are avail-
able, then what can be inferred?

Our results offer insight into which features of the power
spectrum can be attributed to the channel’s conformational
switching dynamics. Most notably, our Theorem 1 says that
the conditionally IID distributions associated with each con-
formational state cannot possibly change the observed power
spectrum, so long as the average output from each state is left
unchanged. So, for example, state-dependent (conditionally
IID) noise cannot be the source of 1/ f noise since it cannot
modulate the power spectrum. Previously, this and related
questions could only be explored experimentally and numeri-
cally [122, Fig. 3].

To contribute to these issues concretely, let us consider
current fluctuations in voltage-gated potassium ion channels.
Figure 11 illustrates an important biophysical application of
Theorem 1: The power spectrum of current through a voltage-
gated K+ channel is invariant to mean-preserving changes
in the ion-current PDFs for each channel conformation. We
demonstrate this for a particular physiologically motivated
model of gating kinetics; see Appendix J for details. However,
it must also hold for any model of potassium ion current,
which may include many hidden open conformations and
electronic states, so long as the output is conditionally IID in
each hidden state.

Figure 11(a) shows the continuous-time model of transition
rates between conformations. Each of these conformations has
a different number of activation gates blocking the channel:
from zero in the open state (leftmost, green) through four. Cur-
rent only flows in the open state, so the K+ current dynamics
is non-Markovian, as is well known. The average current in
each state is either I0 or 0, depending on whether the chan-
nel is in an open or closed conformation, respectively. The
Hodgkin-Huxley parameters αn and βn are voltage-dependent
rates of an individual gate opening or closing. Experiments
on ion channels are typically performed at a fixed membrane
voltage [118,122,123]. With fixed voltage and sampling rate,
the continuous-time model generates a simple discrete-time
HMM. (Time-varying voltages produce more complicated
HMMs.)

Figures 11(b) and 11(c) correspond to a fixed membrane
potential of v = −40 mV, with potassium current sampled

FIG. 11. Biophysical application of Theorem 1: Power spectrum
of current through a potassium ion channel does not depend on the
details of the probabilistic current in each channel conformation.
(a) The continuous-time model of transition rates between conforma-
tions of the channel. Each state has a different number of activation
gates that block the channel (from zero to four). Panels (b) and
(c) show HMMs and representative time series of ion current gen-
erated from this continuous-time model, at a membrane potential
of v = −40 mV and sampling rate of f0 = 4 kHz. (b) Binary out-
put. (c) Continuous-valued output, representing both measurement
noise and current fluctuations. (d) The power spectrum is shown
analytically (thick gray) and numerically [thin blue for binary model
(b) and thin red for continuous-valued model (c)]. The numerical
power spectra were each calculated from a simulated time series of
length 220 using the Welch method, performing FFTs on segments
of length 210. The inset log-log plot shows ∼constant behavior at
low frequency, ∼1/ f 2 behavior at high frequencies, and the effect of
finite sampling rate at very high frequencies.

013170-18



FRAUDULENT WHITE NOISE: FLAT POWER SPECTRA … PHYSICAL REVIEW RESEARCH 3, 013170 (2021)

every τ0 = 250μs. Figures 11(b) and 11(c) each show a HMM
and a randomly sampled time series. For visualization of the
HMMs, the opacity of the directed edges is a simple concave
function of the transition probability. (See Appendix J for the
exact form of the rate matrix and transition matrix.)

Previous analyses considered the power spectrum from
a binary output model similar to Fig. 11(b) [124,125]. Yet
with both measurement noise and current fluctuations, a
continuous-valued model like Fig. 11(c) better represents the
stochastic process observed in experiments. Nevertheless, our
Theorem 1 asserts that both of these models produce exactly
the same power spectrum, up to a frequency-independent
offset. Moreover, for continuous-time processes, this offset
vanishes as the sampling rate increases.

We can state this more precisely as a general corollary of
Theorem 1.

Corollary 2. For any two HMMs whose transition matrix
comes from the same continuous-time generator (via eτ0G):
If the two models have the same average output in each
state, then their power spectra differ only by a frequency-
independent offset:

P(M′ )(ω) − P(M)(ω) = (〈|x|2〉M′ − 〈|x|2〉M)/ f0.

For a family of such processes with bounded variance of the
instantaneous observable, this offset must approach zero as
the sampling rate increases.

Proof. This follows immediately from Theorem 1 when
we treat f0 explicitly. (Recall that f0 was set to unity in the
discrete-time case.)

Nevertheless, small constant offsets can be observed be-
tween the empirical power spectra whenever a finite sampling
frequency is used.

Figure 11(d) shows that the power spectra from model (b)
(blue) and model (c) (red) are indeed the same, up to a very
small constant offset of [πopenσ

2
open + (1 − πopen)σ 2

closed]/ f0 ≈
3.6 × 10−7I2

0 /Hz. This small frequency-independent offset
predicted between the two models becomes visible at the
highest frequencies of the inset log-log plot where power is
lowest.

The power spectrum in the continuous-time limit of f0 →
∞ is derived in Appendix J. The analytic curve (dashed thick
gray) is shown in the log-log inset of Fig. 11(d). It is flat at low
frequencies and falls off as 1/ f 2 at high frequencies. However,
these processes are sampled at a finite rate of f0 = 4 kHz.
The analytic curves for the expected empirical power spectra
[from Figs. 11(b) and 11(c)] are shown in thick gray in the
log-log inset. They deviate from the continuous-time model’s
1/ f 2 behavior but match the numerical power spectra ex-
tremely well up to arbitrarily high frequencies. This whitening
of empirical power spectra at high frequencies is predicted by
Eq. (6).

Our results suggest that observed 1/ f noise is likely due
to non-IID current fluctuations in the channel’s open con-
formation. This conclusion is at odds with the conclusion of
Ref. [122] but is consistent with theoretical [124,125] and ex-
perimental [123] observations in much earlier work, where the
Lorentzian-like power spectrum of the channel’s conductance
fluctuations appears to be additive to the 1/ f flicker noise
background.

Despite 70 or more years of ongoing investigation and
great advances, potassium ion-channel conduction is still not
fully understood [120,126]. Fortunately, the analytic results
here can help—they can be applied to evaluate the power
spectrum from any proposed model and so aid in bridging
theory to experiment. To make genuine progress, these models
will necessarily be more complicated, including transitions
between distinct electronic conduction states in the channel’s
open conformation. On the one hand, the results emphasized
that power spectra are indifferent to several stochastic fea-
tures of alternative models. Yet, on the other, the relationship
between power spectra and eigenvalues of the rate matrix
immediately tells us much about which models can be ruled
out based on nontrivial features of observed power spectra.

V. STRUCTURE IN NOISE?

Surely leveraging predictions to exclude alternative mech-
anisms is a central strategy in physical science, but is there
a direct way to discover structure in apparent noise? One
approach immediately suggests itself. We first reflect on, and
further develop, the theory of higher-order spectra—which
maintain much of the familiarity and convenience of power
spectra. However, enumerating and interpreting higher-order
spectra in general is difficult. Not the least reason for this is
that the number of possible spectral descriptions multiplies
combinatorially. Or sometimes the motivating questions are
more pointed. In these cases, it is often more incisive to
develop an information-theoretic probe of statistical interde-
pendencies.

The ultimate goal, though, in using any of these tools
is constructing a testable model that generates the observed
features of interest. In the deterministic case familiar in clas-
sical physics, this is synonymous with learning the equations
of motion. In open complex systems with noise and many
layers of feedback, this may instead take the form of a
hidden-state model—whose input-dependent time-evolution
operator generalizes the deterministic equations of motion.
By directly expressing mechanisms, developing such models
allows thoughtful reflection on assumptions, generalizations,
and interventions.

A. Polyspectra

Higher-order spectra—often simply polyspectra—are a
natural next step to detecting structure beyond the pairwise
correlations conveyed by power spectra [127,128]. As we will
show, polyspectra are not the ultimate answer to structure
detection; however, they certainly are a tool that practitioners
should be aware of. The following derives new analytical
expressions for polyspectra useful for both experimentalists
and theoreticians. In emphasizing properties already implicit
in the foregoing, the analysis reveals that polyspectra, too, are
blind to predictable structure in processes.

Following Ref. [127], we introduce a general formula-
tion for polyspectra that implicates expectation values—such
as 〈g0(Xt0 )g1(Xt1 )g2(Xt2 )〉—of time-displaced functions of the
observables. As part of the generalization, let gk : A → C be
any function taking observables to complex numbers. If A
is an abstract set—representing, say, observing colors yellow
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or red A = {y, r}—then the gk functions allow a polyspectral
analysis that is not possible otherwise.

Consider the (g0, . . . , gK ) polyspectrum:

Sg0,...,gK (ω1, . . . , ωK ) = lim
N→∞

1

N

〈
K∏

k=0

g̃k
(N )(ωk )

〉
, (20)

where ω0 ≡ −∑K
k=1 ωk and

g̃(N )(ω) ≡
N∑

t=1

g(Xt )e
−iωt . (21)

Although challenging to interpret in full generality, in prin-
ciple polyspectra provide a window into a process’ high-order
nonlinear dependencies. Equation (20) says that polyspec-
tra are the expected products of Fourier components—
components that, in practice, can be obtained from the
FFT. Given the FFT’s well-known computational efficiency,
polyspectra are an especially appealing probe of higher-order
structure.

Many special cases of the (g0, . . . , gK ) polyspectrum
have been well studied. For example, SX ,X (ω) = P(ω) is
the power spectrum, SX ,Y (ω) is the cross-spectrum dis-
cussed in Appendix K, SX ,X,X (ω1, ω2) is the moment bis-
pectrum, SX ,X,X,X (ω1, ω2, ω3) is the moment trispectrum,
SX−〈X 〉,X−〈X 〉,X−〈X 〉(ω1, ω2) is the cumulant bispectrum, and
so on. The following, in contrast, addresses (g0, . . . , gK )
polyspectra generally.

Combining Eqs. (20) and (21) yields:

Sg0,...,gK (ω1, . . . , ωK )

= lim
N→∞

1

N

N∑
t0=1

· · ·
N∑

tK =1

〈
K∏

k=0

gk
(
Xtk

)〉 K∏
k=0

e−iωktk . (22)

Thus, the (g0, . . . , gK ) polyspectrum is closely related to the

expectations 〈∏K
k=0 gk (Xtk )〉, as suggested. And, crucially, the

expectation values can be calculated exactly from any hidden-
state model. Unraveling this exact relationship gives new
insight into what the polyspectrum conveys about a process.

The time variables (tk )K
k=0 in Eq. (22) are not necessarily

time ordered by the index k. Moreover, time variables may
coincide; i.e., it is possible to have t j = tk for j 	= k. To
remove these complications, one can work with a reduced
and time-ordered collection of time variables (t ′

k )κk=0 such
that t ′

k > t ′
k−1, where κ + 1 = |{tk}K

k=0| � K + 1 is the number
of distinct values of the time variables. These time-ordered
variables are defined recursively via t ′

0 = min({tk}K
k=0) and

t ′
� = min({tk}K

k=0 \ {t ′
k}�−1

k=0).
The original time variables (tk )K

k=0 induce a function α :
{0, 1, . . . K} → {0, 1, . . . κ} that compresses and time-orders
the indices, such that tk = t ′

α(k). Although α does not generally
have a unique inverse, we define α−1(�) = {k ∈ {0, 1, . . . K} :
α(k) = �} to be the set of indices that map to �.

For HMMs, we can then express the expectations in
Eq. (22) as:〈

K∏
k=0

gk
(
Xtk

)〉 =
〈

κ∏
�=0

gα−1(�)

(
Xt ′

�

)〉

= tr

[
|1〉〈π|
g

α−1 (0)

κ∏
�=1

T t ′
�−t ′

�−1
g
α−1 (�)

]
, (23)

where tr(·) denotes the trace, the product of operators main-
tains time ordering, we have introduced the new functions
gα−1(�)(x) ≡ ∏

k∈α−1(�) gk (x), and we used the generalized
average-observation matrices:


g ≡
∑
s∈S

〈g(X )〉p(X |s)|s〉〈s|. (24)

Note that the summations over all time variables in Eq. (22)
induce all possible functions α that permute and compress
the indices. And, within each compressed time ordering, all
possible values of the indices consistent with that ordering
are summed over. To enumerate all possible compressed time
orderings, it is useful to explicitly introduce the set F (κ )

K of all
surjective functions mapping {0, 1, . . . K} onto {0, 1, . . . κ}.
For HMMs, we can then express the expectations [129] in
Eq. (22) as:

Sg0,...,gK (ω1, . . . , ωK ) = lim
N→∞

1

N

K∑
κ=0

∑
α∈F (κ )

K

N−κ∑
t ′
0=1

N−κ+1∑
t ′
1=t ′

0+1

. . .

N∑
t ′
κ=t ′

κ−1+1

〈
κ∏

�=0

gα−1(�)

(
Xt ′

�

)〉 κ∏
�=0

e−iω
α−1 (�)t

′
� , (25)

where ωα−1(�) ≡ ∑
k∈α−1(�) ωk .

Leveraging Eq. (23), Appendix O shows that Eq. (25) yields the closed-form expression for the continuous part of the
(g0, . . . , gK ) polyspectrum:

Sg0,...,gK (ω1, . . . , ωK ) =
K∑

κ=0

∑
α∈F (κ )

K

〈π|
g
α−1 (0)

{
κ∏

�=1

T
[
I/z(α)

�:κ − T
]−1


g
α−1 (�)

}
|1〉, (26)

where z
(α)
�:κ ≡ ∏κ

k=� z
(α)
k = e−i

∑κ
k=� ω

α−1(k) .

We see that the (g0, . . . , gK ) polyspectrum sandwiches up
to K resolvents of the time evolution operator T , with each
resolvent separated by average-observation matrices. The re-
solvents couple the chain of observation matrices, and the

polyspectrum reports the average interaction among these ob-
servables over arbitrary displacements.

Using Eq. (9) to express the resolvent [I/z(α)
�:κ − T ]

−1
in

terms of T ’s eigenvalues and spectral projection operators,
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we again see that the eigenspectrum of the time evolution
operator directly controls the polyspectrum of the stochastic
process. Appendix O 1 discusses this further.

Note, too, that, in addition to the continuous part
of the polyspectrum, there are possible discontinuities in
the (g0, . . . , gK ) polyspectrum wherever 1/z

(α)
�:κ ∈ �T . This

“discrete” part of the polyspectrum consists of (K − 1)-
dimensional hyperplanes in the K-dimensional (ωk )K

�=1 fre-
quency space where the magnitude of the polyspectrum
diverges. Our analytic formulas imply that polyspectra may
diverge only where subsets of the frequencies sum to an
eigenfrequency ωλ of an eigenvalue λ = eiωλ on the unit
circle. For example, in a generic bispectrum—which has a
two-dimensional frequency space—this leads to coexisting
diagonal (ω1 + ω2 = ωλ), vertical (ω1 = ωλ), and horizontal
(ω2 = ωλ) streaks of high intensity.

It is useful to probe several special cases of the
(g0, . . . , gK ) polyspectrum. Consider, first, the (X , X )
polyspectrum, SX ,X (ω1), which is simply the power spectrum
P(ω1). In this case, K = 1. So we must consider the functions

contained in F (0)
1 = 0

1
0 and F (1)

1 = 0
1

0
1 , 0

1
0
1

.

For the compressive function α =
0
1

0
, we obtain α−1(0) =

{0, 1}, yielding:


g
α−1 (0)

= 
g{0,1} = 
|X |2 =
∑
s∈S

〈|X |2〉p(X |s)|s〉〈s|.

The (κ = 0) contribution to the power spectrum is thus:

〈π|
|X |2 |1〉 =
∑
s∈S

〈|X |2〉p(X |s)〈π|s〉 = 〈|x|2〉,

which is indeed the first term in Eq. (6). The (κ = 1) contri-
bution to the power spectrum is as follows:∑

α∈F (1)
1

〈π|
g
α−1 (0)

T [eiω
α−1 (1) I − T ]−1
g

α−1 (1)
|1〉,

where it should be recalled that ω0 = −ω1. Plugging in the
identity and swap functions of F (1)

1 , this becomes

2Re〈π|
X T (eiω1 I − T )−1
X|1〉,
which is indeed the last term of Eq. (6).

Appendix O 2 gives a similar analysis of the cumu-
lant bispectrum. Analogously to Corollary 1, we find in
Theorem 6 of Appendix O 2 that:

The cumulant bispectrum is completely flat for any process
generated by a HMM with the same average output 〈X 〉p(X |s) =
〈x〉 from each hidden state.

This serves as a stark warning against overreliance on any
particular polyspectrum: Structure and interdependence will
be missed and it is challenging to predict for which polyspec-
tra this will happen.

Can polyspectra overcome the shortcomings of power
spectra and avoid the inherent pitfalls? Only indirectly. For
example, the cumulant bispectrum—often championed as
the next-step tool for detecting nonlinearities in a process
[128,131–133]—is completely flat for the example process
from Fig. 6 for all values of the transition parameter p ∈
[0, 1]. That is, the cumulant bispectrum tells us no more than

the power spectrum. Yet the moment bispectrum should be
useful in this case, if one only knew how to interpret it. Al-
ternatively, and more simply, if one is sharp enough to use (in
fact, guess) g(X ) = X 2, then the change in observable reveals
the process’ structure through the single-frequency SX 2,X 2 (ω1)
polyspectrum.

Such guesswork is inescapable and, more to the point,
reveals a fundamental problem: If a process’ structure is un-
known a priori, then there is no guarantee that the structure
will be revealed, even after an infinite number of higher-order
polyspectra have been inspected. Generically, it is not clear
which set of polyspectra to use to detect structure. Fortunately,
information theory and model reconstruction both provide
more principled approaches to extracting a process’ statistical
dependencies [66,86].

B. Becoming informed

A more systematic and direct method for exploring
beyond-pairwise correlations in stationary stochastic pro-
cesses is through the sequence of myopic entropy rates
[63,66,67,134–136]:

hL = H (XL|X1X2 . . . XL−1),

with h1 = H (X1). For example, the RRXOR process has
h1 = h2 = log |A| = 1 bit/symbol—it appears as random as
possible when considering symbols individually or in pairs.
Structure is unveiled, though, for L � 3 when hL < 1. That is,
progressively longer Markov-order-L approximations of the
infinite-Markov-order process reveal progressively more of its
hidden structure.

In fact, hL’s convergence reflects how structure is hidden in
the stochastic process [136]. As L → ∞, hL approaches the
process’ Shannon entropy rate h—the irreducible randomness
per symbol after all orders of correlation have been taken into
account. Notably, the accumulation of the excess myopic en-
tropy

∑∞
L=1(hL − h) = E—the excess entropy—quantifies the

total mutual information between the past and future of a pro-
cess: E = I (. . . , X−1, X0 ; X1, X2, . . . ). So while I (X0; Xτ ) =
0 for all τ > 0 for the RRXOR process, the past and future are
nevertheless correlated since E > 0. And the convergence to
predictability can be viewed in the frequency domain through
the excess-entropy spectrum introduced in Ref. [67]. Taken
together, this suggests that myopic entropy rates serve well
to identify hidden structure beyond pairwise correlation. They
show how predictability improves as progressively longer his-
torical context is used.

However, correlations are not always restricted to con-
tiguous blocks. Therefore, there can be pairwise correlations
among distant observables while h2 = 0. Moreover, the my-
opic entropy rates as defined above are restricted to stationary
processes. Consequently, despite their utility, myopic en-
tropies are not ideal for direct indication of L-way correlation
in the most general setting.

A more direct indicator of L-way correlation is found
in the dependence function DL, which quantifies the max-
imal uniquely-L-way correlation that exists in a process.
We say a set χ of random variables is fully correlated if
all constituent random variables inform all of the others;
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that is, if:

H (X |χ \ {X, X ′}) − H (X |χ \ {X })

= I (X ; X ′ |χ \ {X, X ′})

> 0,

for all X, X ′ ∈ χ. A process is then L-way correlated if it has
a set of L random variables that are fully correlated. One way
to quantify this L-way correlation is through the following
dependence function:

DL ≡ sup
{χ⊂{Xt }t : |χ|=L}

min
X,X ′∈χ

I (X ; X ′ |χ \ {X, X ′}),

defined here only for L � 2. L-way dependence is nonzero if
and only if there are novel L-way contributions to a process’
total correlation. Note that dependence can be applied to non-
stationary processes, processes of finite duration and indeed
to any collections of random variables.

Consider, as a simple example of noncontiguous depen-
dencies, the process consisting of two interlaced RRXOR
processes with unambiguous phase, which arose from mea-
surement of an entangled quantum system in Sec. IV A.
Explicitly:

X6n = XOR(X6n−4, X6n−2) and

X6n−1 = XOR(X6n−5, X6n−3),

whereas X6n−5, X6n−4, X6n−3, and X6n−2 are all generated from
a uniform distribution for all n ∈ {1, 2, . . . }. Joint probabili-
ties over contiguous variables are completely uncorrelated and
as random as possible, up until a block-length of five. Let us
treat the example as a stationary process: Calculating prob-
abilities from word frequencies in a single realization, with
the implicit assumption of stationarity, effectively inducing
random phase. Then we find full randomness in the myopic
entropy rates up to block length five: hL = log |A| = 1 bit
for 1 � L < 5. Then, finally, a reduction in apparent entropy
occurs at h5, after which hL < hL−1 for L � 5. Notably, h3

reflects maximal randomness within its purview, whereas the
process actually has three-way but no lower-order depen-
dencies. This yields D1 = D2 = 0 and D3 > 0. With known
phase, we would have D3 = 1 bit.

However, when the process is unknown and only a sin-
gle realization is available for analysis, probabilities can be
inferred only from motifs of random-variable clusters. For
example, estimating Pr(Xt−2, Xt , Xt+2) as if the process were
stationary leads to finding 0 < D̃3 < 1, where D̃L denotes
approximating the dependence function assuming stationarity
and testing a limited set of motifs. Usefully, D̃L sets a lower
bound on DL. So nonzero D̃L implies L-way dependence.
Curiously, the assumption of stationarity induces D̃L > 0 for
all L � 3; reminiscent of how hL − hL−1 > 0 for all L � 3
for the RRXOR process with ambiguous phase. In each case,
these higher-order correlations correspond to the observer’s
ability to resolve phase ambiguity.

The dependence function seems to fulfill its desired role of
identifying high-order correlations that cannot be explained
by lower-order phenomena. Taking a step back, though, we
might question the whole endeavor. Can a single model-free
signal-analysis method ever reliably detect information pro-
cessing and thus complex structure in the world around us?

We clearly ousted power spectra for this task. Nevertheless,
our arguments here lend support to an affirmative answer, but
at the cost of more nuanced and computationally intensive
techniques. What is the range of validity of the informational
measures discussed above? Can they be entrusted with finding
structure in the noise?

First, it should be noted that Shannon entropy is only
fully justifiable for alphabets A of countable cardinality. So
apparently continuous observables must be partitioned into
measurable sets to apply the informational measures like the
myopic entropy rates and the dependencies DL. Nevertheless,
quantum physics suggests that even very large and appar-
ently continuous systems are, in principle, always represented
in a countable basis. Practically, too, measurement devices
only have a finite precision, so observations are discretized
in practice anyway. Therefore, Shannon entropies (like the
myopic entropy rates and the dependencies) can be applied
in principle.

Second, a likely more-severe challenge arises from limita-
tions built into information theory itself. Specifically, there are
more nuanced interpretations of multiway statistical depen-
dencies that are missed by all joint and conditional entropies
and all mutual and conditional mutual information [137,138].

Finally, a third and practical challenge arises from lim-
ited data: Reliable estimates of probabilities are not always
available. Model building offers the strongest response to this
challenge. Generative models inferred from low-order statis-
tics sometimes encapsulate predictions of rare events [139].
And, at least, they give a prediction for high-order statistics.
Testing these predictions against observation allows refining
one’s model and discovering new structure.

VI. CONCLUSION

Our investigation began with the modest task of showing
how to calculate the correlation function and power spectrum
given a signal’s generator. To this end, we briefly introduced
hidden Markov models as signal generators and then used
the linear-operator techniques of Ref. [68] to calculate their
autocorrelation and power spectra in closed form.

This led to several lessons. First, we saw that the power
spectrum is a direct fingerprint of the resolvent of the
model’s time-evolution operator, analyzed along the unit
circle. Second, spectrally decomposing the not-necessarily-
diagonalizable time-evolution operator, we discovered the
range of qualitative behaviors that can be exhibited by auto-
correlation functions and power spectra. Third, contributions
from eigenvalues on the unit circle had to be extracted and
dealt with separately. Contributions from eigenvalues on the
unit circle correspond to Dirac δ functions—the analog of
Bragg reflections in diffraction—whereas eigencontributions
from inside the unit circle correspond to diffuse peaks that
become sharper for eigenvalues closer to the unit circle.
Finally, we found that nondiagonalizable eigenmodes yield
qualitatively different line profiles than their diagonalizable
counterparts.

These first results incisively answer the challenges raised
by Ruelle-Pollicott resonance theory about the possible re-
lationship between complex eigenvalues of time-evolution
operators and the correlation and power spectra of observables
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[12–14]. In short, we provided the exact relationship between
the time-evolution operator and the correlation functions
and power spectra, as well as the possible behavior modes
of each. The result is a deeper theoretical understanding
and constructive calculational methods. These complement
early investigations that experimentally delivered meromor-
phic power spectra from chaotic dynamical systems [10,11].

Accordingly, our findings bear on modern applications
of Ruelle-Pollicott resonance theory. These applications are
leading, for example, to better understanding of sensitivities
in climate models [17] and the dynamics of open quantum
systems via their correspondence to classical chaotic dy-
namical systems [15,16]. Our results provide full analytical
correspondence between observed correlation and the spectral
properties of nonunitary models. Our approach also bears
on Koopman operator theory and its applications, which has
received a new wave of attention due to the success of recent
data-driven algorithms [140]. However, our results also clarify
that resonances discovered via pairwise correlation are gener-
ically an insufficient representation of the spectral features of
such nonnormal dynamics. This emphasizes that the full spec-
tral representation of the effective nonnormal dynamics [68],
generically inaccessible via pairwise correlation, is worth pur-
suing. Success in this will immediately yield predictions about
many complex systems of interest.

The most surprising and more immediate finding, though,
is that temporal structure can fully evade detection by power
spectra. Arbitrarily sophisticated processes can have exactly
flat power spectra and so masquerade as white noise. Ac-
cordingly, we called such processes fraudulent white noise
processes. Theorem 1 and Corollary 1 characterized the many
ways that structure can be hidden from power spectra. And,
ultimately, Theorem 2 addressed the more general condition
for fraudulent white noise, in which the generated time series
could be input-dependent and nonstationary.

We showed that fraudulent white noise and the degeneracy
of power spectra have important physical implications. We
found that fraudulent white noise arises from sequential mea-
surements of entangled quantum systems. Moreover, the gen-
eration of high-order structure and the complete absence of
pairwise structure occurred despite the fact that these quantum
states resulted from a simple sequence of pairwise interac-
tions. Beyond quantum physics, our results on the degeneracy
of power spectra have consequences throughout the sciences.
We derived new results on the degeneracy of diffraction pat-
terns and showed how the entire contents of the present work
can be encoded in a crystal with a flat diffraction pattern.
We then leveraged our results to comment on a longstanding
debate about 1/ f noise in biomolecular ion channels.

We started out noting that, on the one hand, divergent
correlation length often heralds the emergence of new types
of order. And, on the other, that pairwise correlation is gener-
ically identified as the structure in random systems. However,
we showed that there is often rich structure even in the absence
of pairwise correlations. What types of order are we failing to
predict due to an historical emphasis on pairwise correlations?
Complex systems surely exhibit emergent structure beyond
the reach of pairwise statistics. There is almost surely more
functionally relevant brain activity available in EEGs beyond
what is reported in their power spectra. Perhaps, however,

we should consider beyond-pairwise structure for even simple
generators of structure. For example, cosmological models
could be more thoroughly tested against structure in the CMB
beyond what is contained in the two-point angular correlation
functions.

Having diagnosed the structures inaccessible via power
spectra, we discussed how to detect beyond-pairwise struc-
ture. We obtained a closed-form expression for all polyspectra
but showed that higher-order spectra are also completely flat
in some cases where structure should have been apparent. In
response, we introduced the dependence function to detect
any L-way correlations for any L. We also stressed the im-
portance of model building whenever possible. In particular,
it can help anticipate and perhaps avoid not-yet-encountered
catastrophes, which are often a by-product of the high in-
terconnectivity of complex socio-economic systems [141].
Model building, beyond pure signal analysis, is key in this—it
allows us to discover new mechanisms in nature.

This all said, nature still keeps us in the dark. We showed
that the correlations in a message can be shifted to arbitrar-
ily high orders of correlation. The result is that, for finite
length messages, statistical inference can be made effectively
impossible regardless of one’s sophistication. Nature herself
employs this technique whenever we observe an increase
in entropy—giving the impression of randomness generated,
when it is only ever structure hidden in inaccessibly ob-
scure high-order correlations. Waking up to the true hues of
reality—prying open the black box, dispelling apparent white
noise—continues to require new theory and new experimen-
tation.

“... it is clearly wise to learn what a procedure really seems
to be telling us about” [142, p. 60].
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APPENDIX A: DIFFRACTION PATTERNS
AS POWER SPECTRA

Diffraction patterns are used extensively to infer material
structure from the scattering of, for example, an incident
x-ray beam [143–147]. Generally, consider �r ∈ Rd to be a
vector in d-dimensional real space. The spatial arrangement
of elastic scatterers is given by the scatterers’ density f (�r).
Ideally, we wish to recover f (�r) from our diffraction experi-
ments, which provide measured intensities. However, far-field
patterns of diffracted intensity yield only Idiff(�q) = c|F (�q)|2,
where F (�q) = ∫

Rd f (�r)e−i �q·�r dd�r is the d-dimensional Fourier

transform of f (�r), c is some constant, and �q = 2π (�kout − �kin)
is the scattering vector that quantifies the change in the
incident wave vector. In other words, F (�q)’s phase informa-
tion is lost when only intensity is measured. This is known
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as the “phase problem” [112]. The x-ray beam’s expected
diffracted intensity is proportional to 〈|F (�q)|2〉, which is the
d-dimensional generalization of a power spectrum. However,
it is also interesting to relate the d-dimensional diffraction
pattern, along a curve in reciprocal space, to the more familiar
one-dimensional power spectrum.

For a given scattering vector �q, decompose �r = �r‖ + �r⊥,
where �r‖ ≡ (�r · q̂)q̂ and q̂ = �q/| �q|. Then let μ⊥(�r‖) be the
accumulated density within the entire cross-sectional plane
perpendicular to and uniquely identified by �r‖; i.e., μ⊥(�r‖) ≡∫
Rd−1 f (�r‖ + �r⊥) dd−1�r⊥. We then find that in general:

Idiff(�q) = c

∣∣∣∣∫
R

μ⊥(�r‖)e−iqr‖ dr‖

∣∣∣∣2. (A1)

In particular, we see that the diffraction pattern along any line
�q = qq̂ (with varying q but fixed q̂) is the power spectrum
of the net magnitude of scatterers within sequential cross
sections of real space perpendicular to q̂.

For molecular or crystalline structures, the net scatterer
density may often be well approximated by a superposition
of more elementary densities f (�r) = ∑

j f j (�r − �r j ). If we
partition the real space occupied by the material into N layers
of thickness τ0, stacked along a particular direction �̂, then we
obtain the alternative expression:

Idiff(�q) = c

∣∣∣∣∣
N∑

n=1

F (n)(�q)e−iωn

∣∣∣∣∣
2

, (A2)

where ω = τ0 �q · �̂ is (2π times) the change in wave number
per layer in the stacking direction. In such cases, the layer
form factors are as follows:

F (n)(�q) ≡
∑

j∈nth layer

Fj (�q)e−i(�q·�r j−nω),

where the “nth layer” is the set of indices { j : nτ0 � 〈�r j〉 · �̂ <

(n + 1)τ0} for the elementary constituents typically contained
in the layer. And the atomic form factor

Fj (�q) =
∫
Rd

f j (�r)e−i �q·�r dd�r

is the d-dimensional Fourier transform of f j (�r). As a result,
we see that the expected diffraction pattern can always be
written as the power spectrum of layer form factors:

〈Idiff(�q)〉 = cNP(ω) = c

〈∣∣∣∣∣
N∑

n=1

Xne−iωn

∣∣∣∣∣
2〉

, (A3)

with Xn = F (n)(�q) ∈ C as the layer form factor of the nth layer
of the material.

The frequency dependence of F (n)(�q) is often factored out
to “correct” the diffraction pattern, so that only the structure
of interest—features due to the stacking sequence—remains
[148,149].

1. From fraudulent white noise to Debye-Waller theory

It is important to recognize that the elementary positions
{�r j} j are random variables, since thermal motion—and even
quantum uncertainty at zero temperature—can significantly

displace them from their average value. Indeed, the observed
diffraction pattern is not consistent with evaluating {�r j} j at
their average values. This is because the expected value of
a structure factor is not the same as the structure factor
evaluated at the expected value of elementary positions. Nev-
ertheless, the observed diffraction pattern is consistent with
〈|F (�q)|2〉, where the averaging over realizations induces the
proper thermal (and quantum-uncertainty) averaging. How-
ever, the thermal averaging appears unwieldy in the general
case. Fortunately, we can leverage our Theorems 1 and 3 to
rigorously recover the simplifications of Debye-Waller theory
in our setting of randomly stacked structures.

Suppose there is a hidden-state model M( �m) =
(S,A,P, {Tt ( �m)}t ,μ1) that generates the correct statistics of
the layer form factors in the material—taking the stochastic
stacking process, thermal motion, and quantum uncertainty
into account. Theorems 1 and 3 imply that the diffraction
pattern will be the same (up to a constant offset) if we
instead consider the much simpler hidden-state model
M′( �m) = (S,B,Q, {Tt ( �m)}t ,μ1) that outputs only the
expected layer form factor from each latent state.

Each of the expected layer form factors b ∈ B can be ex-
pressed as:

b = 〈X 〉p(X |s∈Sb) =
∑

j∈type-b layer

Fj (�q)〈e−i �q·�r j 〉

=
∑

j∈type-b layer

Fj (�q)e−i �q·〈�r j 〉Dj (�q).

Notably,

Dj (�q) ≡ 〈e−i �q·(�r j−〈�r j 〉)〉 ≈ e
− 1

6 σ 2
�r j

q2

is exactly the Debye-Waller factor for an elementary scatter-
ing site of type j [106]. The variance σ 2

�r j
scales as kBT at

high temperatures (via the equipartition theorem), although it
is still nonzero as T → 0 due to zero-point energy.

In the case that the Debye-Waller factors from all scattering
sites are the same (i.e., Dj (�q) = D(�q)), the thermal averaging
over positions does not broaden the diffraction pattern at all.
Rather, the Debye-Waller factor only suppresses the diffracted
intensity at large scattering magnitudes by an approximately
Gaussian envelope (centered at �q = 0).

In contrast, thermal broadening—expected of spectral lines
throughout the domains of physics—is due to a Doppler effect
from the velocity of the elementary scatterers (rather than
their random positions). This induces a Gaussian convolu-
tion on the otherwise Lorentzian line profile. Whereas the
Debye-Waller factor is important, thermal broadening is not
a significant source of line broadening for x-ray diffraction
[150].

2. Close-packed structures

Recall that each layer of a close-packed structure has a two-
dimensional hexagonal close-packed lattice. The diffracted
intensity will thus only be nonzero at scattering vectors that
satisfy the Laue condition for allowed reflections from the
two-dimensional crystal:

�q − (�q · �̂)�̂ = �G, (A4)
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where �G is in the set of reciprocal lattice vectors of the 2D
hexagonal lattice.

For close-packed structures, there are only three types of
layers, differing only via relative displacements of 1/3 of a
lattice translation vector �t in the plane of the layer [105]. As a
result, if type-A layers have an expected layer form factor of

A =
∑

j∈type-A layer

Dj (�q)Fj (�q)e−i �q·〈�r j 〉,

then type-B layers will have an expected form factor of

B =
∑

j∈type-A layer

Dj (�q)Fj (�q)e−i �q·(〈�r j 〉−�t/3) = ei �q·�t/3A,

and type-C layers will have an expected form factor of

C =
∑

j∈type-A layer

Dj (�q)Fj (�q)e−i �q·(〈�r j 〉+�t/3) = e−i �q·�t/3A.

However, due to the periodic crystallinity in two dimensions,
A is only nonzero when Eq. (A4) is satisfied. By definition of
the reciprocal lattice, �G · �t = 2πm with m ∈ Z. Hence, for all
values of the scattering vector �q where the expected layer form
factors are nonzero, the expected layer form factors are simply
related by the third roots of unity. In particular, when we look
along a row in reciprocal space satisfying �q · �t = 2πm with
m mod 3 = 1, the expected layer form factors are related by:

B = ei2π/3A and C = e−i2π/3A.

APPENDIX B: AUTOCORRELATION FOR PROCESSES
GENERATED BY AUTONOMOUS HMMs

Let us derive the autocorrelation function in general and in
closed form for the class of autonomous HMMs introduced
in the main body. Helpfully, for particular models, the expres-
sions become analytic in terms of the model parameters.

Directly calculating, we find that the autocorrelation func-
tion, for τ > 0, for any such HMM is

γ (τ ) = 〈 Xt Xt+τ 〉

=
∫

x∈A

∫
x′∈A

xx′p(X0 = x, Xτ = x′) dx dx′

=
∑
s∈S

∑
s′∈S

∫
x∈A

∫
x′∈A

xx′p(X0 = x, Xτ = x′,S0 = s,Sτ = s′) dx dx′

=
∑
s∈S

∑
s′∈S

∫
x∈A

∫
x′∈A

xx′ Pr(S0 = s,Sτ = s′) p(X0 = x|S0 = s) p(Xτ = x′|Sτ = s′) dx dx′

=
∑
s∈S

∑
s′∈S

〈π|s〉〈s|T τ |s′〉〈s′|1〉
[∫

x∈A
x p(x|s) dx

] [∫
x′∈A

x′ p(x′|s′) dx′
]

= 〈π|
[∑

s∈S
〈X 〉p(X |s)|s〉〈s|

]
T τ

[∑
s′∈S

〈X 〉p(X |s′ )|s′〉〈s′|
]
|1〉,

where the integrals are written in a form meant to be easily accessible but should generally be interpreted as Lebesgue integrals.
In the above derivation, note that

p(X0 = x, Xτ = x′,S0 = s,Sτ = s′) = Pr(S0 = s,Sτ = s′)p(X0 = x, Xτ = x′|S0 = s,Sτ = s′)

holds by definition of conditional probability. The decomposition of

p(X0 = x, Xτ = x′|S0 = s,Sτ = s′) = p(X0 = x|S0 = s)p(Xτ = x′|Sτ = s′)

for τ 	= 0 follows from the conditional independence in the relevant Bayesian network shown in Fig. 3. Moreover, the equality

Pr(S0 = s,Sτ = s′) = 〈π|s〉〈s|T τ |s′〉〈s′|1〉
can be derived by marginalizing over all possible intervening state sequences. We can use the hidden-state basis, where |s〉 is the
column vector of all 0s except for a 1 at the index corresponding to state s, while 〈s| is simply its transpose. This yields a natural
decomposition of the identity operator: I = ∑

s∈S |s〉〈s|.
Since the autocorrelation is a Hermitian function—i.e., γ (−τ ) = γ (τ )—and

γ (0) = 〈|X |2〉π(X ) = 〈π|
∑
s∈S

〈|X |2〉p(X |s)|s〉,

we find the full autocorrelation function is given by:

γ (τ ) =
⎧⎨⎩〈π|
 T |τ | 
|1〉 if τ � 1

〈|x|2〉 if τ = 0
〈π|
 T |τ | 
|1〉 if τ � 1

, (B1)
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where 
 is the |S|-by-|S| matrix defined by:


 =
∑
s∈S

〈X 〉p(X |s)|s〉〈s|.

The 
 matrix simply places state-conditioned average outputs along its diagonal.
To better understand the range of possible behaviors of autocorrelation, we can go a step further. In particular, we employ the

general spectral decomposition of T τ derived in Ref. [68] for nonnormal and potentially nondiagonalizable operators:

T τ =
[

ν0−1∑
m=0

δτ,mT0,m

]
+

∑
λ∈�T \{0}

νλ−1∑
m=0

(
τ

m

)
λτ−mTλ,m, (B2)

where (τm) is the generalized binomial coefficient:(
τ

m

)
= 1

m!

m∏
n=1

(τ − n + 1),

with (τ0) = 1. As briefly summarized in Sec. II D, �T is the set of T ’s eigenvalues while Tλ is the spectral projection operator
associated with the eigenvalue λ. Recall that νλ is the index of the eigenvalue λ, i.e., the size of the largest Jordan block associated
with λ, and Tλ,m = Tλ(T − λI )m. Substituting Eq. (B2) into Eq. (B1) yields:

γ (τ ) =
[

ν0−1∑
m=1

δτ,m〈π|
 T0,m 
|1〉
]

+
∑

λ∈�T \{0}

νλ−1∑
m=0

(
τ

m

)
λτ−m〈π|
 Tλ,m 
|1〉,

for τ > 0.
It is significant that the zero eigenvalue contributes a qualitatively distinct ephemeral behavior to the autocorrelation while

|τ | < ν0. All other eigenmodes contribute products of polynomials times decaying exponentials in τ . When T is diagonalizable,
the autocorrelation is simply a sum of decaying exponentials.

APPENDIX C: ANALYTICAL POWER SPECTRA

The following derives both the continuous and discrete part of the power spectrum for HMM-generated processes. The
development parallels that in Ref. [70], although that derivation was restricted to the special case of diffraction patterns from
Mealy (i.e., edge-emitting) HMMs with countable alphabets. In contrast, the following derives analytical expressions for the
power spectrum of any stochastic process generated by an HMM. Notably, it also allows uncountably infinite alphabets. Also, it
is developed for Moore (i.e., state-emitting) HMMs—although Mealy and Moore HMMs are class equivalent and can be easily
transformed from one to the other.

1. Diffuse spectra

Recall Eq. (3):

P(ω) = lim
N→∞

1

N

N∑
τ=−N

(N − |τ |)γ (τ )e−iωτ ,

and Eq. (4)’s explicit expression for the correlation function:

γ (τ ) =

⎧⎪⎨⎪⎩
〈π|
 T |τ | 
|1〉 if τ � 1
〈|x|2〉 if τ = 0

〈π|
 T |τ | 
|1〉 if τ � 1

.

From these we can rewrite the power spectrum directly in terms of the generating HMM’s transition matrix:

P(ω) = 〈|x|2〉 + lim
N→∞

2

N
Re

N∑
τ=1

(N − τ )〈π|
 T τ 
|1〉e−iωτ = 〈|x|2〉 + lim
N→∞

2

N
Re〈π|


[
N∑

τ=1

(N − τ )T τ e−iωτ

]

|1〉. (C1)

We used the fact that z + z = 2Re(z) for any z ∈ C. For convenience, we introduce the variable z ≡ e−iω. We then note that the
summation splits:

N∑
τ=1

(N − τ )T τ e−iωτ = N
N∑

τ=1

(zT )τ −
N∑

τ=1

τ (zT )τ .
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For positive integer N , it is always true that:

(I − zT )
N∑

τ=1

(zT )τ = zT − zN+1T N+1,

and

(I − zT )
N∑

τ=1

τ (zT )τ = −NzN+1T N+1 +
N∑

τ=1

(zT )τ .

Hence, whenever I − zT is invertible (i.e., whenever eiω /∈ �T ), we have:

N∑
τ=1

(zT )τ = (I − zT )−1(zT − zN+1T N+1),

and
N∑

τ=1

τ (zT )τ = (I − zT )−1[−NzN+1T N+1 + (I − zT )−1(zT − zN+1T N+1)].

Together, this yields:

N∑
τ=1

(N − τ )T τ e−iωτ = N
N∑

τ=1

(zT )τ −
N∑

τ=1

τ (zT )τ

= N (I − zT )−1(zT − zN+1T N+1 + zN+1T N+1) − (I − zT )−2(zT − zN+1T N+1)

= NT (z−1I − T )−1 − (I − zT )−2(zT − zN+1T N+1).

Noting that (z−1I − T )−1 = (eiωI − T )−1, this implies that the continuous (i.e., diffuse) part of the power spectrum becomes

Pc(ω) = 〈|x|2〉 + lim
N→∞

2

N
Re〈π|


[
N∑

τ=1

(N − τ )T τ e−iωτ

]

|1〉

= 〈|x|2〉 + lim
N→∞

2

N
Re〈π|
 [NT (z−1I − T )−1 − (I − zT )−2(zT − zN+1T N+1)] 
|1〉

= 〈|x|2〉 + 2 Re〈π|
 T (z−1I − T )−1 
|1〉 − lim
N→∞

2

N
Re〈π|
 (I − zT )−2(zT − zN+1T N+1) 
|1〉, (C2)

= 〈|x|2〉 + 2 Re〈π|
 T (eiωI − T )−1 
|1〉. (C3)

Equation (C3) is the principle result, yielding the continuous part of the power spectrum in closed form. However, it is also worth
noting that Eq. (C2) (without the N → ∞ limit yet being taken) provides the exact result for the expected periodogram from
finite length-N samples.

2. Discrete spectra

The transition dynamic’s eigenvalues �ρ(T ) = {λ ∈ �T : |λ| = 1} on the unit circle are responsible for a power spectrum’s
Dirac δ functions. In the physical context of diffraction patterns, these δ functions are the familiar Bragg reflections. For finite
length-N samples, eigenvalues on the unit circle give rise to Dirichlet kernels. As N → ∞, the analysis simplifies since the
Dirichlet kernels converge to δ functions.

The following derives the exact form of the δ-function contributions, showing how their presence and integrated magnitude
can be calculated directly from the stochastic transition dynamic. Recall that the spectral projection operator Tλ,0 associated with
the eigenvalue λ can be defined as the residue of (zI − T )−1 as z → λ:

Tλ,0 = 1

2π i

∮
Cλ

(zI − T )−1 dz.

The spectral companion operators are

Tλ,m = Tλ,0(T − λI )m,

with the useful property that Tλ,mTζ ,n = δλ,ζ Tλ,m+n and Tλ,m = 0 for m � νλ. The index νλ of the eigenvalue λ is the size of the
largest Jordan block associated with λ.
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The Perron-Frobenius theorem guarantees that all eigenvalues on the unit circle have an index of one: i.e., νλ = 1 for all
λ ∈ �ρ(T ). This means that the algebraic and geometric multiplicities of these eigenvalues coincide and they are all associated
with diagonalizable subspaces.

Taking advantage of the index-one nature of the eigenvalues on the unit circle, and using the shorthand Tλ ≡ Tλ,0 for the
spectral projection operators, we define:

� ≡
∑

λ∈�ρ(T )

λTλ

and

F ≡ T − �.

We then consider how the spectral decomposition of T τ splits into contributions from these two independent components: From
Ref. [68], and employing the simplifying notation that 0τ−m = δτ−m,0, we find:

T τ =
∑
λ∈�T

νλ−1∑
m=0

λτ−m

(
τ

m

)
Tλ,m =

⎛⎝ ∑
λ∈�ρ(T )

λτ Tλ

⎞⎠+
⎡⎣ ∑

λ∈�T \�ρ(T )

νλ−1∑
m=0

λτ−m

(
τ

m

)
Tλ,m

⎤⎦ = �τ + F τ ,

where (τ

m) = 1
m!

∏m
n=1(τ − n + 1) is the generalized binomial coefficient.

As the sequence length N → ∞, the summation over τ in Eq. (C1) divided by the sequence length becomes

lim
N→∞

N∑
τ=1

N − τ

N
T τ e−iωτ =

∞∑
τ=1

T τ e−iωτ =
( ∞∑

τ=1

�τ e−iωτ

)
+
( ∞∑

τ=1

F τ e−iωτ

)
. (C4)

In Eq. (C4), only the summation involving � is capable of contributing δ functions. Expanding that sum yields:

∞∑
τ=1

�τ e−iωτ =
∑

λ∈�ρ(T )

Tλ

∞∑
τ=1

(λe−iω )τ =
∑

λ∈�ρ(T )

Tλ

[
−1 +

∞∑
τ=0

ei(ωλ−ω)τ

]

=
∑

λ∈�ρ(T )

Tλ

[
−1

1 − ei(ω−ωλ )
+

∞∑
k=−∞

π δ(ω − ωλ + 2πk)

]
, (C5)

where ωλ is related to λ by λ = eiωλ . The last line is obtained using well-known properties of the discrete-time Fourier transform
[151].

From Eqs. (C1), (C4), and (C5), we find that the potential δ function at ωλ (and its 2π -periodic offsets) has integrated
magnitude:

�λ ≡ lim
ε→0

∫ ωλ+ε

ωλ−ε

P(ω) dω

= lim
ε→0

∫ ωλ+ε

ωλ−ε

2 Re〈π|

(

lim
N→∞

N∑
τ=1

N − τ

N
T τ e−iωτ

)

|1〉 dω

= lim
ε→0

∫ ωλ+ε

ωλ−ε

2 Re〈π|

( ∞∑

τ=1

�τ e−iωτ

)

|1〉 dω

= lim
ε→0

∫ ωλ+ε

ωλ−ε

2 Re〈π|

∑

ζ∈�ρ(T )

Tζ

[
−1

1 − ei(ω−ωζ )
+

∞∑
k=−∞

π δ(ω − ωζ + 2πk)

]

|1〉 dω

= 2π Re〈π|
 Tλ 
|1〉 lim
ε→0

∫ ωλ+ε

ωλ−ε

δ(ω − ωλ) dω

= 2π Re〈π|
 Tλ 
|1〉. (C6)

Finally, from Eq. (C6) and the 2π -periodicity of the power spectrum, we obtain the full discrete (i.e., δ function) contribution
to the power spectrum:

Pd (ω) =
∑

λ∈�ρ(T )

2π Re〈π|
 Tλ
|1〉
∞∑

k=−∞
δ(ω − ωλ + 2πk). (C7)
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APPENDIX D: A NEW CONDITION FOR 1/ f NOISE

Here we obtain a sufficient condition for 1/ f noise.
Equation (14) gave the general formula for power spectra

from continuous-time processes:

Pc( f ) =
∑
λ∈�G

νλ−1∑
m=0

2 Re
〈π|
 Gλ,m
|1〉
(i2π f − λ)m+1

.

We now restrict attention to diagonalizable transition rate
operators. To simplify notation, we relabel the spectral inten-
sity as cλ ≡ 〈π|
 Gλ,0
|1〉. Recall the following.

Definition 1. A continuous-time process has doubly har-
monic diminution if:

(i) its generator of time evolution G is diagonalizable and
has N + 1 evenly spaced eigenvalues along the real line �G =
{−na}N

n=0 for some a > 0, and
(ii) its spectral intensity fades with increasing frequency

according to c−na = c/n for n � 1 and some c ∈ R.
We will show that any process with doubly harmonic

diminution produces 1/ f noise over a frequency bandwidth
proportional to N .

For a process with doubly harmonic diminution, the power
spectrum simplifies considerably to:

Pc( f ) =
∑
λ∈�G

2 Re
cλ

i2π f − λ

=
N∑

n=1

2 Re
c/n

i2π f + na

= 2c

a

N∑
n=1

1

n2 + ( 2π f
a

)2 . (D1)

By considering various limits, we see that Eq. (D1) leads
to nearly perfect 1/ f noise over a significant bandwidth.

1. Constant spectrum for f � a/2π

If 2π f � a, then 1 + ( 2π f
na )

2 ≈ 1 for all n � 1. Accord-
ingly:

P( f ) = 2c

a

N∑
n=1

1

n2
[
1 + ( 2π f

na

)2]
≈ 2c

a

N∑
n=1

1

n2
= 2c

a
HN,2

→ cπ2

3a
as N → ∞,

where HN,2 = ∑N
n=1

1
n2 is a generalized harmonic number.

Notably, HN,2 → π2/6 as N → ∞.

2. 1/ f 2 spectrum for f � Na/2π

If 2π f � Na, then 2π f � na and 1 + ( na
2π f )

2 ≈ 1 for all
n � N . Accordingly:

P( f ) = 2c

a

N∑
n=1

1( 2π f
a

)2[
1 + (

na
2π f

)2]
≈ ac

2π2 f 2

N∑
n=1

1 = caN

2π2 f 2
.

3. 1/ f spectrum for a
2π

� f � Na
2π

If 2π f � Na, then 2π f � na and 1 + ( 2π f
na )2 ≈ 1 for any

n � N . Then:

P( f ) = 2c

a

⎛⎝[ ∞∑
n=1

1

n2+( 2π f
a

)2

]
−
⎧⎨⎩

∞∑
n=N+1

1

n2
[
1+( 2π f

na

)2
]
⎫⎬⎭
⎞⎠

≈ 2c

a

{[ ∞∑
n=1

1

n2 + ( 2π f
a

)2

]
−
( ∞∑

n=N+1

1

n2

)}

= 2c

a

{[ ∞∑
n=1

1

n2 + ( 2π f
a

)2

]
−
(

π2

6
− HN,2

)}
.

With the identity
∞∑

n=1

1

n2 + ( 2π f
a

)2 = a coth(2π2 f /a)

4 f
− 1

2
( 2π f

a

)2 ,

this yields:

P( f ) ≈ c coth(2π2 f /a)

2 f
− ac

(2π f )2
− 2c

a

(
π2

6
− HN,2

)
for 2π f � Na.

For f > a
2π2 , the hyperbolic cotangent coth(2π2 f /a)

quickly converges to unity. Hence, for a
2π2 � f � Na

2π
, the

power spectrum is well approximated by:

P( f ) ≈ c

2 f

(
1 − a

2π2 f

)
− 2c

a

(
π2

6
− HN,2

)
≈ c

2 f
− 2c

a

(
π2

6
− HN,2

)
.

Moreover, π2

6 − HN,2 → 0 as N → ∞.

4. Combining the regimes

We showed that any process with doubly harmonic diminu-
tion has three distinctive regimes in its power spectrum: nearly
constant for very low frequency, 1/ f decay over a broad
bandwidth, and 1/ f 2 decay at very large frequencies.

The transition frequencies between these three behav-
ior regimes is found more specifically by looking for
the crossover frequencies— f ∗ where the constant and 1/ f
approximations meet, and f ∗∗ where the 1/ f and 1/ f 2 ap-
proximations meet.

The first transition frequency f ∗, from constant to 1/ f be-
havior, satisfies 2c

a HN,2 = c
2 f ∗ − 2c

a ( π2

6 − HN,2). We find that:

f ∗ = 3a

2π2
. (D2)

The second transition frequency f ∗∗, from 1/ f behavior to
1/ f 2 behavior, satisfies:

c

2 f ∗∗ − 2c

a

(
π2

6
− HN,2

)
= acN

2π2( f ∗∗)2
.

We find that:

f ∗∗ = a

8
(

π2

6 − HN,2
)[1 −

√
1 − 8

3
N

(
1 − 6HN,2

π2

)]
.
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This exact expression for f ∗∗ can be expanded in terms of the
small parameter:

ε = 8

3
N

(
1 − 6HN,2

π2

)
such that:

f ∗∗ = aN

2π2ε
[1 − (1 − ε)1/2]

= aN

2π2

∞∑
k=1

(
1/2

k

)
(−ε)k−1

= aN

4π2

[
1 − 1

4
ε + 1

8
ε2 − O(ε3)

]
,

that, to first order, yields the approximation f ∗∗ ≈ aN
4π2 .

Altogether, this leads to:

P( f ) ≈

⎧⎪⎨⎪⎩
2c
a HN,2 if f < 3a

2π2

c
2 f − 2c

a

(
π2

6 − HN,2
)

if 3a
2π2 < f < f ∗∗

caN
2π2 f 2 if f > f ∗∗

or, more simply:

P( f ) ∼
⎧⎨⎩

constant if f < 3a
2π2

1/ f if 3a
2π2 < f � aN

4π2

1/ f 2 if f � aN
4π2

.

APPENDIX E: BROWNIAN NOISE

Here we show how to recover the power spectrum of Brow-
nian motion using the tools of Sec. II F. This simple example
indicates how to leverage the tools more generally to analyze
the power spectra of more sophisticated Langevin-type dif-
ferential equations that can transduce arbitrarily sophisticated
noise models.

Each spatial dimension of a Brownian trajectory behaves
independently and simply integrates white noise. In the
discrete-time case, the fundamental equation for Brownian
noise is

Yt − Yt−1 = Xt , (E1)

where Xt is a Gaussian white noise of variance σ 2 = 2Dτ0,
where D is the diffusion coefficient, which implies PXX (ω) =
σ 2/ f0 = 2D/ f 2

0 . Equation (E1) corresponds to P(D) = D0 −
D and Q(D) = D0, which leads to:

|HX→Y (ω)|2 = |Q(eiω )|2
|P(eiω )|2

= 1

|1 − eiω|2 = 1

2[1 − cos(ω)]
(E2)

and

PYY (ω) = 2D/ f 2
0

2[1 − cos(ω)]
(E3)

= D

2π2 f 2
{
1 − π2

3

( f
f0

)2 + O
[( f

f0

)4]} , (E4)

→ D

2π2 f 2
as

f

f0
→ 0. (E5)

The last line gives the limiting power spectrum of Brownian
noise in the continuous-time case, where it is well known that
PYY ( f ) ∝ 1/ f 2.

It is worth noting that, at finite sampling frequency, the
experimentally or numerically obtained power spectrum de-
viates significantly from the 1/ f 2 spectrum as f → f0/2,
according to Eq. (E4). This could lead to misidentifying 1/ f α

noise.

APPENDIX F: PROOF OF LEMMA 1

Recall Lemma 1:
Any stochastic process (not necessarily stationary) with the

SCIP:

Pr(Xt |Xt ′ = x) = Pr(Xt ) = Pr(Xt ′ ),

for all x ∈ A and all t 	= t ′, generates a flat power spectrum,
mimicking white noise.

Proof. For any such process, Pr(Xt ) is the stationary distri-
bution μX of the instantaneous observable under the stochastic
dynamic. Moreover, SCIP means that the joint probability of
any two observations decomposes:

Pr(Xt = x, Xt+τ = x′) = Pr(Xt+τ = x′|Xt = x) Pr(Xt = x)

= Pr(Xt+τ = x′) Pr(Xt = x)

= μX (x′)μX (x).

Substituting μX (x′)μX (x) for Pr(Xt = x, Xt+τ = x′) in the
autocorrelation definition of Eq. (2) immediately implies
that SCIP processes have τ -independent pairwise correlation
γ (τ ) = |〈x〉|2 for τ 	= 0. The power spectrum is thus flat
over all frequencies, except possibly with a δ function at
ω = 0.

APPENDIX G: PROOF OF THEOREM 2

We define the set � of average outputs exhibited by the
states: � ≡ ⋃

s∈S{〈x〉p(X |s)}. Furthermore, we define Sξ ⊂ S
as the set of states that all exhibit the same average output
ξ ∈ �. Explicitly, Sξ ≡ {s ∈ S : 〈x〉p(X |s) = ξ}.

Recall Theorem 2:
Let {Xt }t be a stochastic process generated by a hidden-

state model M( �m). Xt is the random variable for the
observable at time t , and St is the random variable for the
hidden state at time t . Such processes have constant autocor-
relation and a flat power spectrum if:

Pr(St+τ ∈ Sξ ′ |St ∈ Sξ ) = Pr(St+τ ∈ Sξ ′ )

= Pr(St ∈ Sξ ′ ), (G1)

for all separations τ > 0, for all t ∈ T , and for all ξ, ξ ′ ∈ �.
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Proof. Starting from Eq. (17), we find the autocorrelation
for all such processes (for τ � 1):

γ (τ ) = 〈〈x〉p(X |St )〈x〉p(X |St+τ )

〉
Pr(St ,St+τ )

=
∑

s,s′∈S
Pr(St = s,St+τ = s′)〈x〉p(X |s)〈x〉p(X |s′ )

=
∑

ξ,ξ ′∈�

Pr(St ∈ Sξ ,St+τ ∈ Sξ ′ ) ξ ξ ′

=
∑
ξ∈�

Pr(St ∈ Sξ )ξ

×
∑
ξ ′∈�

Pr(St+τ ∈ Sξ ′ |St ∈ Sξ )ξ ′. (G2)

Combining Eqs. (G1) and (G2), we see that:

γ (τ ) =
∑
ξ∈�

Pr(St ∈ Sξ )ξ
∑
ξ ′∈�

Pr(St+τ ∈ Sξ ′ )ξ ′ = |〈ξ 〉|2,

which is a constant. With the same reasoning, we likewise find
that γ (τ ) = |〈ξ 〉|2 for τ � −1. The autocorrelation function
is thus γ (τ ) = |〈ξ 〉|2 + cδτ,0, where c ≡ γ (0) − |〈ξ 〉|2 is a
constant. Thus, the power spectrum is flat, if Eq. (G1) holds.

APPENDIX H: PROOF OF THEOREM 3

Recall Theorem 3: Let {Xt }t and {Yt }t be two stochastic
processes generated by any of the hidden-state models M( �m)
discussed above, including autonomous HMMs and input-
dependent generators, Xt and Yt the random variables for the
observables at time t , and St ∈ S and Rt ∈ R the random
variables for the respective hidden states at time t . These
processes have identical power spectra, up to a constant offset,
if:

Pr(St ∈ Sξ ,St+τ ∈ Sξ ′ ) = Pr(Rt ∈ Rξ ,Rt+τ ∈ Rξ ′ ),

for all separations τ > 0, for all t ∈ T , and for all ξ, ξ ′ ∈ �,
which is the set of average outputs emitted by the states.

Proof. Let γ (τ ) be the autocorrelation function for the first
process {Xt }t , and let γ ′(τ ) be the autocorrelation function for
the second process {Yt }t . Assume:

Pr(St ∈ Sξ ,St+τ ∈ Sξ ′ ) = Pr(Rt ∈ Rξ ,Rt+τ ∈ Rξ ′ )

for all separations τ > 0, for all t ∈ T , and for all ξ, ξ ′ ∈ �.
Then, starting from Eq. (17), we find the autocorrelation for
the first process (for τ � 1):

γ (τ ) = 〈〈x〉p(X |St )〈x〉p(X |St+τ )

〉
Pr(St ,St+τ )

=
∑

s,s′∈S
Pr(St = s,St+τ = s′)〈x〉p(X |s)〈x〉p(X |s′ )

=
∑

ξ,ξ ′∈�

Pr(St ∈ Sξ ,St+τ ∈ Sξ ′ ) ξ ξ ′

=
∑

ξ,ξ ′∈�

Pr(Rt ∈ Rξ ,Rt+τ ∈ Rξ ′ ) ξ ξ ′

=
∑

r,r′∈R
Pr(Rt = r,Rt+τ = r′)〈x〉p(X |r)〈x〉p(X |r′ )

= 〈〈x〉p(X |Rt )〈x〉p(X |Rt+τ )

〉
Pr(Rt ,Rt+τ )

= γ ′(τ ).

With the same reasoning, we find that γ (τ ) = γ ′(τ ) for τ �
−1. Hence, the autocorrelations for the two processes agree
everywhere except possibly at τ = 0.

Define the constant c ≡ γ (0) − γ ′(0). The autocorrelation
functions for the two processes are then related by γ (τ ) =
γ ′(τ ) + cδτ,0 for all τ . It then follows that the power spectrum
of the processes differ at most by a constant offset.

APPENDIX I: DIFFRACTION PATTERNS OF CHAOTIC
CRYSTALS FROM HMMs

Let us analyze two examples of HMM-designed chaotic
crystals.

1. Example One

Consider a p-parametrized stochastic process for the stack-
ing of layers of a close-packed structure. The stochastic
stacking process is described by a HMM, where the transition
matrix and average-observation matrix are as follows:

T =
⎡⎣0 1 0

p 0 1 − p
1 0 0

⎤⎦ and 
 =
⎡⎣A 0 0

0 B 0
0 0 C

⎤⎦,

respectively. For p = 1, we recover the deterministic period-2
hcp structure. For p = 0, we recover the deterministic period-
3 ccp structure. For other values of p, the structure is described
by a stochastic stacking process.

For any p, the eigenvalues of the transition matrix are

�T = {1,− 1
2 ±

√
p − 3

4 }. The transition matrix is diagonal-
izable unless p = 3/4, where it becomes nondiagonalizable.

We aim to calculate the diffracted intensity for any p in
closed form via Eq. (10):

Pc(ω) = 〈|x|2〉 +
∑
λ∈�T

νλ−1∑
m=0

2 Re
〈π|
 T Tλ,m
|1〉

(eiω − λ)m+1

and Eq. (11):

Pd (ω) =
∞∑

k=−∞

∑
λ∈�T|λ|=1

2π δ(ω−ωλ+2πk) Re〈π|
 Tλ
|1〉.

We note that 〈|x|2〉 = 〈|ψ |2〉 = |ψ |2.
For p 	= 3/4, the continuous spectrum simplifies to:

Pc(ω) = |ψ |2 +
∑
λ∈�T

2 Re
λ〈π|
 Tλ
|1〉

eiω − λ
,

and each spectral projection operator is given by Tλ = |λ〉〈λ|,
with:

〈λ| = 1

3λ2 − p
[λ 1 λ2 − p] and |λ〉 = [λ λ2 1]�,

where � denotes transposition. Recall that the sta-
tionary distribution is the left eigenvector 〈π| = 〈1| =

1
3−p [1 1 1 − p].

013170-31



PAUL M. RIECHERS AND JAMES P. CRUTCHFIELD PHYSICAL REVIEW RESEARCH 3, 013170 (2021)

From these elements, we can calculate the spectral intensity:

〈π|
 Tλ
|1〉 = |ψ |2
(3 − p)(3λ2 − p)

[1 1 1 − p]

⎡⎣1
e−i2π/3

ei2π/3

⎤⎦⎡⎣ λ

λ2

1

⎤⎦[λ 1 λ2 − p]

⎡⎣1
ei2π/3

e−i2π/3

⎤⎦⎡⎣1
1
1

⎤⎦
= |ψ |2

(3 − p)(3λ2 − p)
[λ + λ2e−i2π/3 + (1 − p)ei2π/3][λ + ei2π/3 + (λ2 − p)e−i2π/3] (I1)

for any λ ∈ �T and for any p 	= 3/4.
For λ = 1, Eq. (I1) reduces to:

〈π|
 T1
|1〉 = p2|ψ |2
(3 − p)2

, (I2)

where we have used the identity 1 + ei2π/3 + e−i2π/3 = 0.
Equation (I2) is in fact valid for any p ∈ [0, 1].

For p ∈ (0, 1), transition matrix T only has one eigenvalue
on the unit circle, so the discrete (Bragg) spectrum has a single
contribution from the eigenvalue of unity:

Pd (ω) = 2π p2|ψ |2
(3 − p)2

∞∑
k=−∞

δ(ω+2πk) . (I3)

Although not resulting from a deterministic periodicity, this
Bragg reflection can nevertheless be regarded as a result of
spatial periodicity in probabilistic behavior.

In fact, for any p > 0, the top-left panel of Fig. 9 shows
that orientations A and B are more common than orientation
C. However, Eq. (I3) survives a cyclic permutation of the
alphabet (i.e., A �→ B, B �→ C, and C �→ A). So, this Bragg
reflection persists even in multicrystalline materials—where
each component chaotic crystal, with its own absolute orien-
tation, is stacked according to either the process in Fig. 9 or
one of its cyclic permutations.

There is a diffuse contribution to the power spectrum for
all p ∈ (0, 1). For p ∈ (0, 3/4) ∪ (3/4, 1), this contribution is
as follows:

Pc(ω) = |ψ |2
[

1 − p2

(3 − p)2

]
+

∑
λ∈�T \{1}

2 Re
〈π|
 Tλ
|1〉

eiω/λ − 1
.

Expanding this via Eq. (I1) initially appears unwieldy, but
the expressions can be simplified as soon as one recognizes
that λ2 = p − 1 − λ for λ ∈ �T \ {1}. Further simplification
leverages the properties of the eigenvalues in the distinct
regimes of p > 3/4 and p < 3/4. For p > 3/4, all eigenval-
ues have distinct real values. For p < 3/4, the two nonunity
eigenvalues are complex conjugate pairs and, accordingly,
have the same real part [Re(λ) = −1/2] and the same mag-
nitude (|λ| = √

1 − p), with angular frequencies ωλ = π ±
arctan(

√
3 − 4p).

Figure 12 shows the “corrected” diffraction pattern
P(ω)/|ψ |2 for p = 1/2. There is a Bragg reflection at ω =
2πn (for all n ∈ Z) due to the eigenvalue of unity. The
nonunity eigenvalues λ = −1/2 ± i/2 appear at angular fre-
quencies ωλ ∈ {3π/4, 5π/4}. The Lorentzian line profile
contributed at ωλ = 3π/4 is prominent. There is a local fea-
ture around ωλ = 5π/4, but it is more nuanced since it is not a
peak in the diffracted intensity. Rather, the contribution from
the eigenvalue at ωλ = 5π/4 primarily depresses the diffrac-

tion pattern around it, which allows for the zero at ω = 4π/3.
Diffracted intensity is forbidden at 4π/3 since the stochastic
process does not allow for a full anti-cyclic sequence of layers;
i.e., CBA, BAC, and ACB are all forbidden sequences.

For p = 1, the continuous spectrum vanishes while the
discrete spectrum picks up another Bragg reflection at ω = π

with intensity 〈π|
 T−1
|1〉 = 3
4 |ψ |2, yielding the diffraction

pattern for a 2H hcp crystal:

P(ω)= 2π |ψ |2
∞∑

k=−∞

[
1

4
δ(ω+2πk) + 3

4
δ(ω−π+2πk)

]
.

Similarly, for p = 0, the continuous spectrum vanishes
while the discrete spectrum picks up a Bragg reflection at
ω = 2π/3 with intensity 〈π|
 Tei2π/3
|1〉 = |ψ |2, yielding the
diffraction pattern for a 3C+ ccp crystal:

P(ω)= 2π |ψ |2
∞∑

k=−∞
δ(ω−2π/3+2πk).

Notice from Eq. (I2) that the former Bragg reflection at ω = 0
has vanished at p = 0.

For p = 3/4, the transition matrix is nondiagonalizable.
Since the spectral projection operators always sum to the

A B

C

1

1/2

1/21

P
(ω

)/
|ψ
|2

ω

FIG. 12. Example One stochastic stacking process at p = 1/2
(left inset) and its diffraction pattern. Main: Numerical diffraction
pattern (thin blue line) generated from a sampled stacking sequence
of 220 layers, using the Welch method to calculate the power spec-
trum on subsamples of length 29. It closely matches the thick gray
line, which is the analytic solution for the diffracted intensity. Right
inset: HMM stacking process diffraction pattern and eigenvalues, as
a coronal spectrogram.
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identity, we can calculate T−1/2 easily via T−1/2 = I − |1〉〈π|,
with 〈π| = 1

9 [4 4 1], which yields:

T−1/2 = 1

9

⎡⎣ 5 −4 −1
−4 5 −1
−4 −4 8

⎤⎦.

The spectral companion operator T−1/2,1 is then found as:

T−1/2,1 = T−1/2

(
T + 1

2
I

)

= 1

12

⎡⎣−2
1
4

⎤⎦[1 −2 1].

To obtain the diffracted intensity, we calculate:

〈π|
T−1/2
|1〉 = 8|ψ |2/9

and

〈π|
T−1/2,1
|1〉 = |ψ |2
3

ei2π/3.

We then leverage the fact that T T−1/2,1 = − 1
2 T−1/2,1 and

T T−1/2 = − 1
2 T−1/2 + T−1/2,1 to calculate:

〈π|
T T−1/2,1
|1〉 = −|ψ |2
6

ei2π/3

and

〈π|
T T−1/2
|1〉 = (− 4
9 + 1

3 ei2π/3
)|ψ |2.

Finally, this yields the nondiagonalizable power spectrum at
p = 3/4:

Pc(ω)

|ψ |2 = 8

9
− 1

3
Re

ei2π/3(
eiω + 1

2

)2 + 2

3
Re

ei2π/3 − 4
3

eiω + 1
2

.

2. Example Two

Here we analyze a generalization of the second chaotic
crystal discussed in the main body. For any q, the transition
matrix and average-observation matrix are as follows:

T =
⎡⎣0 1 − q q

1 0 0
1 0 0

⎤⎦ and 
 =
⎡⎣A 0 0

0 B 0
0 0 C

⎤⎦,

respectively. The transition matrix eigenvalues are �T =
{0,±1}, independent of q.

Each spectral projection operator is given by Tλ = |λ〉〈λ|,
with:

〈λ| = 1

3λ − 1
[λ λ2 − q q]

and

|λ〉 = [λ 1 (λ2 + q − 1)/q]�.

Recall that the stationary distribution is the left eigenvector
〈π| = 〈1| = 1

2 [1 1 − q q]. From these elements, we cal-
culate 〈π|
 Tλ
|1〉 and the power spectrum analytically as a
function of the transition parameter q. In particular:

〈π|
 T1
|1〉 = 1
4 (3q2 − 3q + 1)|ψ |2

α

4β

2α

3β

3α

2β

4α

β

FIG. 13. Voltage-dependent continuous-time Markov chain
specifying the transition rates between the conformational states
of the K+ channel. α and β are voltage-dependent transition rates.
Only the empty (green) state conducts current. The other states
have between one and four activation gates (indicated by the
number of red dots) blocking the channel. This model is thus an
input-dependent continuous-time HMM for potassium ion current
through the channel.

and

〈π|
 T−1
|1〉 = 3
4 (q2 − q + 1)|ψ |2.

The net power spectrum thus consists of a flat “white noise”
component:

Pc(ω) = 3

2
q(1 − q)|ψ |2

in addition to two Bragg reflections per 2π of angular fre-
quency bandwidth

Pd (ω) = π |ψ |2
2

∞∑
k=−∞

[(3q2 − 3q + 1)δ(ω+2πk)

+ 3(q2 − q + 1)δ(ω−π+2πk)].

APPENDIX J: POTASSIUM ION CHANNEL—DETAILS

This section lays out the details for the voltage-gated
potassium ion channel, as an input-dependent transition rate
matrix for partially observable conformational states—i.e., a
continuous-time input-dependent HMM. Potassium ion chan-
nels are embedded in neural membranes and, together with
sodium ion channels, are critical to generating and propagat-
ing action potentials that transmit and process information
throughout the brain.

What are the dynamics and power spectra of potassium
current flowing through the channel? Only one of the five
conformational states corresponds to an open channel where
current can flow. The other states are distinguished by the
number of activation gates closing the channels (from one to
four), but observation of the current does not allow for direct
observation of these conformational states. Nevertheless, the
dynamics among these states influence the statistical proper-
ties of the current. In particular, the current is non-Markovian
and exhibits a nonexponential distribution of closure dura-
tions.

The transition structure between conformational states of
the K+ channel is depicted in Fig. 13. The Hodgkin-Huxley
model’s voltage-dependent transition rates α and β—often
denoted αn and βn—describe the probability that an activation
gate opens or closes (respectively) at a given voltage:

α = (v + 55)/100 ms

1 − e−(v+55)/10
and β = 1

8 ms
e−(v+65)/80,
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where v is the voltage (in mV) across the membrane
[118,121]. The voltage-dependent transition rate matrix can
be written explicitly as:

G(S→S|v)

≡

⎡⎢⎢⎢⎣
−4β 4β 0 0 0
α −(α + 3β ) 3β 0 0
0 2α −(2α + 2β ) 2β 0
0 0 3α −(3α + β ) β

0 0 0 4α −4α

⎤⎥⎥⎥⎦.

The average current through a single channel is binary—
either 0 or I0. Appreciable current only flows in the open
conformation. In the open conformation, I0 = g0(v − VK ),
where g0 is the conductance of an open K+ channel and
VK is the Nernst potential for potassium. Accordingly, the
average-observation operator for the ion current is 
 =
I0|open〉〈open|, where 〈open| = [1 0 0 0 0] denotes
the open conformation (i.e., the green state in Fig. 13).

The rate matrix eigenvalues are �G = {−n(α + β )}4
n=0.

Applying Eq. (14), the power spectrum at a fixed voltage is

Pc( f ) =
∑
λ∈�G

νλ−1∑
m=0

2 Re
〈π|
 Gλ,m
|1〉
(i2π f − λ)m+1

=
4∑

n=0

2 Re
〈π|
 G−n(α+β )
|1〉
i2π f + n(α + β )

= 2I2
0 〈π|open〉

4∑
n=0

Re
〈open|G−n(α+β )|open〉

i2π f + n(α + β )

= 2I2
0 〈π|open〉

4∑
n=1

〈open|G−n(α+β )|open〉
n(α + β )

{
1 + [ 2π f

n(α+β )

]2} .

For convenience, define the opening bias ψ ≡ α/β as the
ratio between an individual gate’s rates of opening versus
closing. The spectral projection operators {G−n(α+β )}n are
simple analytic functions of ψ . We then find the open state’s
overlap with the spectral projection operators:

〈open|G−n(α+β )|open〉 =
(

4

n

)
ψ4−n

(1 + ψ )4
.

By setting n = 0, this expression also yields the stationary
probability of the open state: 〈π|open〉 = ( ψ

1+ψ
)
4
.

The power spectrum for potassium current is thus:

Pc( f ) = I2
0

π

(
ψ

1 + ψ

)8 4∑
n=1

(4
n

)
ψ−n

nw
[
1 + ( f

nw

)2] , (J1)

where w ≡ (α + β )/2π . Each nonzero eigenmode con-
tributes a Lorentzian profile to the power spectrum, each with
a different crossover frequency fc = nw depending on n. This
spread of crossover frequencies smooths the transition be-
tween the flat power spectrum at low frequencies and the 1/ f 2

spectrum at high frequencies. At v = −40 mV, the crossover
frequency of the net spectrum is f net

c ≈ 3w.
In fact, a power spectral signature of this general form

has been experimentally observed above the 1/ f background

noise [123]. That said, the empirically observed crossover fre-
quency suggests that the model is not a complete description
of the ion channel dynamics.

Equation (J1), derived from the rate matrix’s spectral prop-
erties, agrees with the much earlier results calculated via
alternative methods in Refs. [124,125]. For ease of compar-
ison with those references, note that the Hodgkin-Huxley
parameter n∞ is related to ψ via n∞ = ψ/(1 + ψ ).

In voltage-clamped experiments, a common neurophysi-
ological measurement technique, the voltage is held fixed.
Then, the finite-duration transition matrix is simply T =
eτ0G, where τ0 is the duration between measurements. Since
K+ current (rather than conformational states) is measured,
this gives the transition matrix of a HMM for the observed
current. The finite sampling rate associated with such a
discrete-time HMM allows exactly predicting the expected
empirical spectrum. At high frequencies, this deviates from
the continuous-time spectrum as the latter implicitly assumes
an infinite sampling rate.

APPENDIX K: CROSS-CORRELATION AND
SPECTRAL DENSITIES

Cross-correlation and cross-spectral densities are often im-
portant in applications [152,153]. These may be especially
useful when analyzing input-output processes, to characterize
the correlation of input and output, or to characterize the
correlation between different aspects of the output. Our results
can be easily extended to address these quantities.

Using an HMM that describes the joint stochastic process
of two observables (x, y) ∈ A, it is straightforward to gener-
alize our developments to cross-correlation γXY (τ ):

γXY (τ ) = 〈XtYt+τ 〉
(rather than necessarily autocorrelation γ = γXX ) and the as-
sociated cross-spectral densities PXY (ω):

PXY (ω) = lim
N→∞

1

N

〈(
N∑

t=1

Xt e
iωt

)(
N∑

t=1

Yt e
−iωt

)〉

= lim
N→∞

1

N

N∑
τ=−N

(N − |τ |)γXY (τ )e−iωτ

of distinct observables x ∈ X and y ∈ Y . The individual
stochastic processes for each observable by itself can simply
be obtained by marginalizing over the other observable.

Explicitly, the expressions take the form:

γXY (τ ) =
⎧⎨⎩

〈π|
Y T |τ | 
X |1〉 if τ � 1〈
X tYt

〉
if τ = 0

〈π|
X T |τ | 
Y |1〉 if τ � 1
,

where:


Y =
∑
s∈S

〈Y 〉p(X,Y |s)|s〉〈s|,

and

〈X tYt 〉 =
∑
s∈S

〈π|s〉〈XY 〉p(X,Y |s).
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Moreover, the continuous part of the cross-spectral density is
given by:

PXY c(ω) = 〈X tYt 〉 + 〈π|
X T (eiωI − T )−1
Y |1〉
+ 〈π|
Y T (e−iωI − T )−1
X |1〉,

and so on.

APPENDIX L: PAIRWISE MUTUAL
INFORMATION EXAMPLE

For the process generated by the HMM given in Fig. 6,
if we take the limit of ever-narrower Gaussians in the state-
conditioned PDFs, so that we work with pairs of δ functions,
then the process becomes Markovian and the pairwise mutual
information can be calculated exactly:

I (X0; Xτ ) = H (X0) − H (Xτ |X0)

= H (X0,S0) − H (Xτ ,Sτ |X0,S0)

= H (S0) + H (X0|S0) − H (Xτ ,Sτ |S0)

= H (S0) + H (X0|S0) − H (Sτ |S0) − H (Xτ |Sτ )

= H (S0) − H (Sτ |S0)

= H (π) −
∑
s∈S

π(s)H (Sτ |S0 = s)

= H (π) −
∑
s∈S

π(s)H (〈s|T τ )

= H (π) +
∑

s,s′∈S
π(s)〈s|T τ |s′〉 log 〈s|T τ |s′〉, (L1)

where π = [1, 1 − p, 1 − p, 1 − p]/(4 − 3p).
Continuing, 〈s|T τ |s′〉 can be calculated via T ’s spectral

decomposition. Since T is diagonalizable and nondegenerate
for all values of the transition parameter p, we find:

〈s|T τ |s′〉 =
∑
λ∈�T

λτ 〈s|Tλ|s′〉.

Moreover:
〈s|T1|s′〉 = 〈s|1〉〈π|s′〉

= π(s′),
so 〈s|T τ |s′〉 simplifies somewhat to:

〈s|T τ |s′〉 = π(s′) +
∑

λ∈�T \{1}
λτ 〈s|Tλ|s′〉.

In fact, Eq. (L1) is valid for any set of four PDFs we could
have chosen for the example HMM’s states, as long as the
PDFs all have mutually exclusive support for the observable
output, since this then makes the hidden state a function of the
instantaneous observable.

Using the linear algebra of Eq. (L1), we calculate the
pairwise mutual information and POPI spectrum numeri-
cally. The pairwise mutual informations are shown for p ∈
{0.1, 0.5, 0.9} in Fig. 14. Reasonably, the loss of information
is monotonic over temporal distance. More surprisingly, the
decay of pairwise mutual information is very-nearly exponen-
tial as made clear in the inset logarithmic plot.

The POPI spectrum, which can be rewritten for a wide-
sense stationary process as:

I (ω) = lim
N→∞

2
N∑

τ=1

cos(ωτ )I (X0; Xτ ),

τ

I(
X

0
;X

τ
)

lo
g 2

I(
X

0
;X

τ
)

FIG. 14. Nontrivial pairwise mutual information for the process
from Fig. 6 with a flat power spectrum.

is shown for these same p values in Fig. 15. The POPI
spectrum was approximated by truncating the summation of
modulated pairwise mutual informations at a sufficiently large
separation of τ = 2000.

APPENDIX M: MEASUREMENT FEEDBACK MODELS

Let us now turn to describe an alternative set of possibly
input-dependent models, which may be more convenient for
describing certain phenomena. For example, they are more
natural for describing measured quantum systems. They also
reduce to the canonical models used in computational me-
chanics [86,88] after a number of simplifying assumptions.

After introducing them, we show that Theorem 2 applies to
them as well as to the other model types discussed in the main
body. In this way, we extend the theory of fraudulent white
noise to these models as well.

The models we consider generate observable behavior
during transitions between states, rather than in the states

ω

I(
ω
)

FIG. 15. POPI spectrum for the process from Fig. 6.
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themselves. This is a natural approach in the quantum setting
since measurement feedback changes the state of the quan-
tum system with dependence on the measurement outcome.
For projective measurements, measurement fully defines the
new state, but for the much more general class of quantum
measurements described by positive operator valued mea-
sures, the measurement outcome plays a more nuanced role
in updating the state. More generally, edge-emitting models
can be natural descriptors of complex systems with control
and feedback. And, fittingly, edge-emitting models have been
used elsewhere as well. For instance, they appear extensively
in computer science and computational mechanics—the latter
of which spans the study of natural computation in physical
systems and the minimal resources required for prediction.

1. Measurement feedback models

Here we introduce measurement feedback models (MFMs)
MMFM( �m), which are input-dependent generators of an ob-
servable output process {Xt }t∈T . As before, the lengths
and alphabets of the inputs and outputs need not be
commensurate. The output is generated via MMFM( �m) =
(S,A, {T (x)

t ( �m)}t∈T ,x∈A,μ1), where S is the countable set of
hidden states, A is the alphabet of observables, and μ1 is the
initial distribution over hidden states. For a given t and x, the
matrix elements 〈s|T (x)

t ( �m)|s′〉 provide the probability density
of transitioning from state s to s′ while emitting the observable
x; that is,

〈s|T (x)
t ( �m)|s′〉 = p �m(Xt+1 = x,St+1 = s′|St = s),

where p �m is the probability density (induced by �m) of the
labeled transition. The symbol-labeled transition matrices
{T (x)

t ( �m)}t∈T ,x∈A yield the net state-to-state transition prob-
abilities when marginalizing over all possible observations:∫

x∈A
T (x)

t ( �m) dx = Tt ( �m),

where 〈s|Tt ( �m)|s′〉 = Pr �m(St+1 = s′|St = s).
Figure 16 displays two different (but equally valid)

Bayesian networks for the decomposition of conditional de-
pendencies among observables and latent states of a MFM.
Each decomposition suggests a preferred interpretation. The
decomposition of Fig. 16(a) allows identifying a PDF with
each directed edge between latent states of a measurement
feedback model MMFM( �m). Accordingly, Fig. 16(a) suggests
that the transited edge determines the probability of the ob-
servable, whereas the decomposition of Fig. 16(b) suggests
that the observation determines the probability of the latent
state transition. The fact that both decompositions are valid
insists, perhaps surprisingly, that the interpretations have no
physical distinction. The interpretation of causality is am-
biguous although each calculus of conditional dependencies
is reliable.

The measurement feedback models may initially appear
rather restrictive when considering the possibilities of, say,
measuring a quantum system in different bases and with
different instruments. However, in principle, the different
measurement choices are incorporated through the different
transformations Tt ( �m), both through any predetermined mea-

.

S1 S2 S3

X1 X2 X3

Hidden message and embedding protocol . . .

(a)
.

S1 S2 S3

X1 X2 X3

Hidden message and embedding protocol . . .

(b)

FIG. 16. Alternative Bayesian networks for measurement feed-
back models.

surement choices in �m and through dynamic determination via
feedback of the measurement outcomes themselves.

Reference [154]’s process tensors can also be used to
model classical observable processes generated by general
quantum dynamics. Although unnecessarily elaborate for
most purposes, process tensors are appealing since they rigor-
ously incorporate general quantum measurements. Ultimately
though, they, together with a set of “experiments” �m, could be
mapped onto the alternative rather-simpler models proposed
here if the goal is only to model the observable classical output
process.

2. Theorem 2 for measurement feedback

The MFM’s average-observation matrices are as follows:


t =
∫

x∈A
x T (x)

t ( �m) dx.

Notably, they are no longer diagonal in the hidden-state ba-
sis. Rather, they assign to each matrix element the average
observation associated with that transition, multiplied by the
probability of the edge being traversed when conditioned on
occupying the outgoing state. That is,

〈s|
t |s′〉 =
∫

x∈A
x p �m(St+1 = s′, Xt = x|St = s) dx

= Pr
�m

(St+1 = s′|St = s)

×
∫

x∈A
x p �m(Xt = x|St = s,St+1 = s′) dx

= 〈s|Tt ( �m)|s′〉〈x〉p �m (Xt |St =s,St+1=s′ ). (M1)
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If the process is wide-sense stationary, then for τ > 0:
γ (τ ) = 〈μt |
t Tt+1:t+τ ( �m) 
t+τ |1〉, (M2)

which must be t independent.
For input-independent processes with time-independent

transition dynamics—where T (x)
t ( �m) = T (x) and μ1 = π—

this simplifies to the autonomous Mealy-type HMMs with
continuous PDFs for the observable associated with each
hidden-state-to-state transition. The autocorrelation function
(for τ � 1) then reduces to:

γ (τ ) = 〈π|
 T τ−1 
|1〉,
while the power spectrum’s continuous part is

Pc(ω) = 〈|x|2〉 + 2 Re〈π|
 (eiωI − T )−1
|1〉. (M3)
Note that this expression lacks T , the transition dynamic,
when compared to Eq. (6). This follows since 
 induces a
transition for these Mealy-type HMMs, reducing the number
of subsequent transitions by 1.

Let us return to the general setting for autocorrelation
given by Eq. (M2) for processes generated by possibly input-
dependent models. Developing the analog of Theorem 2
requires recognizing that the average observation on each edge
matters, rather than previously, where the average observation
from each state mattered. For MFMs, constant autocorrelation
and flat power spectrum can again be guaranteed by a rather
weak condition: The average output of the current edge does
not by itself influence the average output of a future edge.

More explicitly, consider the set of all edges:
E (t ) ≡ {(s, s′) ∈ S × S : 〈s|Tt ( �m)|s′〉 	= 0},

which are transitions between hidden states that can be tra-
versed at time t with positive probability. Since outputs occur

during edge transitions, we redefine � as the set of average
outputs exhibited by the edges. Equation (M1) indicates that
the desired definition is as follows:

� ≡
⋃
t∈T

⋃
(s,s′ )∈E (t )

{ 〈s|
t |s′〉
〈s|Tt ( �m)|s′〉

}
.

Furthermore, we define Et to be the random variable for the
edge traversed at time t ; i.e., Et is the joint random variable:
Et = (St ,St+1). And we define E (t )

ξ ⊂ E (t ) as the set of edges
(at time t) with average output ξ ∈ �:

E (t )
ξ ≡

{
(s, s′) ∈ E (t ) :

〈s|
t |s′〉
〈s|Tt ( �m)|s′〉 = ξ

}
. (M4)

With these in hand, we can state the theorem analogous to
Theorem 2.

Theorem 4. Let {Xt }t be a stochastic process generated
by any measurement feedback model MMFM( �m), including
autonomous Mealy-type HMMs and input-dependent genera-
tors. Such processes have constant autocorrelation and a flat
power spectrum if:

Pr
[
Et+τ ∈ E (t+τ )

ξ ′
∣∣Et ∈ E (t )

ξ

] = Pr
[
Et+τ ∈ E (t+τ )

ξ ′
]

tand there exists a constant c ∈ C such that:∑
ξ∈�

ξ Pr
[
Et ∈ E (t )

ξ

] = c,

for all separations τ > 0, t ∈ T , and ξ, ξ ′ ∈ �.
Proof. Starting from Eq. (M2), we find the autocorrelation

for all such processes by calculating:

γ (τ ) = 〈μt |
t Tt+1:t+τ ( �m) 
t+τ |1〉
=

∑
s,s′,s′′,s′′′∈S

〈μt |s〉〈s|
t |s′〉〈s′|Tt+1:t+τ ( �m)|s′′〉〈s′′|
t+τ |s′′′〉〈s′′′|1〉

=
∑

(s,s′ )∈E (t )

(s′ ,s′′′ )∈E (t+τ )

[ 〈s|
t |s′〉
〈s|Tt ( �m)|s′〉

][ 〈s′′|
t+τ |s′′′〉
〈s′′|Tt+τ ( �m)|s′′′〉

]
〈μt |s〉〈s|Tt ( �m)|s′〉〈s′|Tt+1:t+τ ( �m)|s′′〉〈s′′|Tt+τ ( �m)|s′′′〉〈s′′′|1〉

=
∑

(s,s′ )∈E (t )

(s′ ,s′′′ )∈E (t+τ )

[ 〈s|
t |s′〉
〈s|Tt ( �m)|s′〉

][ 〈s′′|
t+τ |s′′′〉
〈s′′|Tt+τ ( �m)|s′′′〉

]
Pr(St = s,St+1 = s′,St+τ = s′′,St+τ+1 = s′′′)

=
∑

(s,s′ )∈E (t )

(s′ ,s′′′ )∈E (t+τ )

[ 〈s|
t |s′〉
〈s|Tt ( �m)|s′〉

][ 〈s′′|
t+τ |s′′′〉
〈s′′|Tt+τ ( �m)|s′′′〉

]
Pr(Et = (s, s′), Et+τ = (s′′, s′′′))

=
∑

ξ,ξ ′∈�

ξξ ′ Pr
(
Et ∈ E (t )

ξ , Et+τ ∈ E (t+τ )
ξ ′

)
=
∑
ξ∈�

ξ Pr
(
Et ∈ E (t )

ξ

)[∑
ξ ′∈�

ξ ′ Pr
(
Et+τ ∈ E (t+τ )

ξ ′
∣∣Et ∈ E (t )

ξ

)]
.

Now suppose that:

Pr
[
Et+τ ∈ E (t+τ )

ξ ′
∣∣Et ∈ E (t )

ξ

] = Pr
[
Et+τ ∈ E (t+τ )

ξ ′
]

and there exists some constant c ∈ C such that: ∑
ξ∈�

ξ Pr
[
Et ∈ E (t )

ξ

] = c,
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for all separations τ > 0, t ∈ T , and ξ, ξ ′ ∈ �. Then, we find:

γ (τ ) =
∑
ξ∈�

ξ Pr
[
Et ∈ E (t )

ξ

]{∑
ξ ′∈�

ξ ′ Pr
[
Et+τ ∈ E (t+τ )

ξ ′
∣∣Et ∈ E (t )

ξ

]} =
{∑

ξ∈�

ξ Pr
[
Et ∈ E (t )

ξ

]}{∑
ξ ′∈�

ξ ′ Pr
[
Et+τ ∈ E (t+τ )

ξ ′
]} = |c|2,

which is a constant for all separations τ > 0, t ∈ T , and
ξ, ξ ′ ∈ �. Finally, a process with stationary low-order statis-
tics and a flat autocorrelation has a flat power spectrum, as an
immediate consequence of Eq. (3). This proves Theorem 4.

For the special case of an autonomous HMM that gener-
ates observations during hidden-state-to-state transitions, this
condition simplifies significantly. Specifically, 
t → 
 and
Tt ( �m) → T become t independent, which furthermore means
that E (t )

ξ → Eξ becomes t independent. For autonomous
wide-sense stationary processes, we have Pr(Et ) = Pr(Et+τ )
for all separations τ > 0 and for all t ∈ T . It then trivially
follows that

∑
ξ∈� ξ Pr(Et ∈ Eξ ) is constant for all t ∈ T .

So the only requirement for an autonomous edge-emitting
HMM to produce fraudulent white noise is that it satisfies the
condition:

Pr(Et+τ ∈ Eξ ′ |Et ∈ Eξ ) = Pr(Et+τ ∈ Eξ ′ )
for all separations τ > 0, t ∈ T , and ξ, ξ ′ ∈ �.

Theorem 4 provides a very general condition for flat power
spectra from measurement feedback models.

APPENDIX N: THEOREM 2 FOR TIME-DEPENDENT PDFs

Moreover, Theorem 4 suggests how Theorem 2 generalizes
even further to possibly-input-dependent hidden-state models
with time-dependent PDFs associated with each state. We
will call these morphing hidden models (MHMs) MMHM( �m).
MHMs include, as special cases, all models (Moore-type
HMMs and input-dependent generators) considered in the
main text. We employ methods similar to those used in Ap-
pendix M 2.

A MHM is a possibly-input-dependent generator of an
observable output process {Xt }t∈T . The output is gener-
ated via MMHM( �m) = (S,A, {Pt ( �m)}t , {Tt ( �m)}t ,μ1). Here,
again, the lengths and alphabets of the inputs and outputs
need not be commensurate. That is, the internal states S and
output alphabet A are static. However, the hidden-state-to-
state transition matrix Tt ( �m)—as well as the state-dependent

PDFs Pt ( �m)—are time-dependent such that their values at
time t are potentially a function of the full input vector �m.
More specifically, Pt ( �m) is the set of hidden-state-dependent
probability density functions p �m(Xt |s) at time t . As before, μ1
specifies the initial distribution over hidden states: S1 ∼ μ1.

For such cases, set:


t =
∑
s∈S

〈x〉p �m (Xt |s)|s〉〈s|.

The 
t matrix is time dependent with the state-conditioned
expected outputs along its diagonal.

Since the average state output now varies in time, we must
generalize � from its more restricted use in the main text.
Specifically, redefine � as the set of state-dependent average
outputs generated throughout time:

� ≡
⋃
t∈T

⋃
s∈S

{〈x〉p �m (Xt |s)

}
.

Furthermore, we define S (t )
ξ ⊂ S as the set of states (at time

t) with average output ξ ∈ �:

S (t )
ξ ≡ {

s ∈ S : 〈Xt 〉p �m (Xt |s) = ξ
}
.

Using these, we can state the following theorem, which gen-
eralizes Theorem 2.

Theorem 5. Let {Xt }t be a stochastic process generated by
any morphing hidden model MMHM( �m). Such processes have
constant autocorrelation and a flat power spectrum if:

Pr
[
St+τ ∈ S (t+τ )

ξ ′
∣∣St ∈ S (t )

ξ

] = Pr
[
St+τ ∈ S (t+τ )

ξ ′
]

and there exists a constant c ∈ C such that:∑
ξ∈�

ξ Pr
[
St ∈ S (t )

ξ

] = c,

for all separations τ > 0, t ∈ T , and ξ, ξ ′ ∈ �.
Proof. For the processes under consideration, we find the

linear pairwise correlation (for τ � 1) to be

〈Xt Xt+τ 〉p �m (Xt ,Xt+τ ) = 〈μt |
t Tt :t+τ ( �m) 
t+τ |1〉
=

∑
s,s′∈S

〈μt |s〉〈s|
t |s〉〈s|Tt :t+τ ( �m)|s′〉〈s′|
t+τ |s′〉〈s′|1〉

=
∑

ξ,ξ ′∈�

ξξ ′ ∑
s∈S(t )

ξ

s′∈S(t+τ )
ξ ′

Pr
�m

(St = s,St+τ = s′)

=
∑

ξ,ξ ′∈�

ξξ ′ Pr
(
St ∈ S (t )

ξ ,St+τ ∈ S (t+τ )
ξ ′

)
=
∑
ξ∈�

ξ Pr
[
St ∈ S (t )

ξ

]{∑
ξ ′∈�

ξ ′ Pr
[
St+τ ∈ S (t+τ )

ξ ′ |St ∈ S (t )
ξ

]}
. (N1)
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Now suppose that:

Pr
[
St+τ ∈ S (t+τ )

ξ ′
∣∣St ∈ S (t )

ξ

] = Pr
[
St+τ ∈ S (t+τ )

ξ ′
]

and there exists some constant c ∈ C such that: ∑
ξ∈�

ξ Pr
[
St ∈ S (t )

ξ

] = c

for all separations τ > 0, for all t ∈ T , and for all ξ, ξ ′ ∈ �. Then, we find:

〈Xt Xt+τ 〉p �m (Xt ,Xt+τ ) =
∑
ξ∈�

ξ Pr
[
St ∈ S (t )

ξ

]{∑
ξ ′∈�

ξ ′ Pr
[
St+τ ∈ S (t+τ )

ξ ′
∣∣St ∈ S (t )

ξ

]}

=
{∑

ξ∈�

ξ Pr
[
St ∈ S (t )

ξ

]}{∑
ξ ′∈�

ξ ′ Pr
[
St+τ ∈ S (t+τ )

ξ ′
]} = |c|2.

is constant for all t ∈ T , and ∀ξ, ξ ′ ∈ �.
That 〈Xt Xt+τ 〉p �m (Xt ,Xt+τ ) is constant verifies that the autocorrelation does not depend on the overall time shift of the process, so

〈Xt Xt+τ 〉p �m (Xt ,Xt+τ ) = γ (τ ). Moreover, γ (τ ) is constant. Finally, a process with constant autocorrelation has a flat power spectrum,
as an immediate consequence of Eq. (3). This proves Theorem 5.

APPENDIX O: ANALYTICAL POLYSPECTRA

This section derives new analytical expressions for polyspectra, revealing their close relationship with the time-evolution
operator’s eigenspectrum and resolvent.

The (g0, . . . , gK ) polyspectrum is defined as:

Sg0,...,gK (ω1, . . . , ωK ) ≡ lim
N→∞

1

N

〈
K∏

k=0

g̃k
(N )(ωk )

〉
, (O1)

where ω0 ≡ −∑K
k=1 ωk and

g̃(N )(ω) ≡
N∑

t=1

g(Xt )e
−iωt . (O2)

Each gk : A → C can be any function taking observables to complex numbers.
Combining Eqs. (O1) and (O2) yields:

Sg0,...,gK (ω1, . . . , ωK ) = lim
N→∞

1

N

N∑
t0=1

· · ·
N∑

tK =1

〈
K∏

k=0

gk
(
Xtk

)〉 K∏
k=0

e−iωktk . (O3)

The original time variables (tk )K
k=0 induce a function α : {0, 1, . . . K} → {0, 1, . . . κ} that compresses and time-orders the

indices, such that tk = t ′
α(k). Since α does not have a unique inverse, we define the preimage α−1(�) = {k ∈ {0, 1, . . . K} : α(k) =

�} to be the set of indices that map to �.
For HMMs, we then express the expectations in Eq. (O3) as:〈

K∏
k=0

gk
(
Xtk

)〉 =
〈

κ∏
�=0

gα−1(�)

(
Xt ′

�

)〉 = tr

[
|1〉〈π |
g

α−1 (0)

κ∏
�=1

T t ′
�−t ′

�−1
g
α−1 (�)

]
, (O4)

where tr(·) denotes the trace, the product of operators on the right maintains time ordering, we define gα−1(�)(x) ≡∏
k∈α−1(�) gk (x), and 
g ≡ ∑

s∈S 〈g(X )〉p(X |s)|s〉〈s|.
The summations over all time variables in Eq. (O3) induce all possible functions α that permute and compress the indices.

And, within each compressed time-ordering, all possible values of the indices consistent with that ordering are summed over.
To enumerate all possible compressed time-orderings, it is useful to explicitly introduce the set F (κ )

K where F (κ )
K is the set of all

surjective functions mapping {0, 1, . . . K} onto {0, 1, . . . κ}. Then, we can rewrite Eq. (O3) in terms of the new time-ordered set
of variables (t ′

0, t ′
1, . . . t ′

κ ) where t ′
k − t ′

k−1 > 0 for all k > 0. Dropping the prime on the t ′
k variables, we obtain:

Sg0,...,gK (ω1, . . . , ωK ) = lim
N→∞

1

N

K∑
κ=0

∑
α∈F (κ )

K

N−κ∑
t0=1

N−κ+1∑
t1=t0+1

. . .

N∑
tκ=tκ−1+1

〈
κ∏

k=0

gα−1(k)

(
Xtk

)〉 κ∏
k=0

e−iω
α−1 (k)tk , (O5)

where ωα−1(k) ≡ ∑
�∈α−1(k) ω�.
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The manifest time-ordering in Eq. (O5) allows us to use Eq. (O4) for the expectation. It is convenient to rewrite this as:〈
κ∏

k=0

gα−1(k)

(
Xtk

)〉 = tr

{
|1〉〈π |
g

α−1 (0)
T −t0

[
κ−1∏
k=1

T tk 
g
α−1 (k)

T −tk

]
T tκ 
g

α−1 (κ )

}
. (O6)

Technically this assumes that the index of the transition matrix is bounded by ν0(T ) � tk − tk−1. This assumption is valid, for
example, if T is not singular. Otherwise, a slight modification of the derivation is required, where the zero eigenspace is treated
separately. In either case, the final expressions we obtain for polyspectra remain unchanged.

Plugging Eq. (O6) back into Eq. (O5) consolidates and eventually eliminates the tk dependencies, starting with tκ . To see this,
we introduce z

(α)
k ≡ e−iω

α−1 (k) and rearrange terms:

Sg0,...,gK (ω1, . . . , ωK )

= lim
N→∞

1

N

K∑
κ=0

∑
α∈F (κ )

K

N−κ∑
t0=1

N−κ+1∑
t1=t0+1

· · ·
N∑

tκ=tκ−1+1

tr

{
|1〉〈π |
g

α−1 (0)
T −t0

[
κ−1∏
k=1

T tk 
g
α−1 (k)

T −tk

]
T tκ 
g

α−1 (κ )

}
κ∏

k=0

e−iω
α−1 (k)tk

= lim
N→∞

1

N

K∑
κ=0

∑
α∈F (κ )

K

N−κ∑
t0=1

N−κ+1∑
t1=t0+1

· · ·
N∑

tκ=tκ−1+1

〈π |
g
α−1 (0)

T −t0

{
κ−1∏
k=1

[
z

(α)
k T

]tk

g

α−1 (k)
T −tk

}[
z(α)
κ T

]tκ

g

α−1 (κ )
|1〉[z(α)

0

]t0

= lim
N→∞

1

N

K∑
κ=0

∑
α∈F (κ )

K

N−κ∑
t0=1

. . .

N−κ+�∑
t�=t�−1+1

· · ·
N−1∑

tκ−1=tκ−2+1

〈π |
g
α−1 (0)

T −t0

{
κ−1∏
k=1

[
z

(α)
k T

]tk

g

α−1 (k)
T −tk

}

×
{

N∑
tκ=tκ−1+1

[
z(α)
κ T

]tκ

}

g

α−1 (κ )
|1〉[z(α)

0

]t0
. (O7)

This results in summations of the form
∑b

t=a(zT )t . It is always true that (I − zT )
∑b

t=a(zT )t = (zT )a − (zT )b+1. Hence,
when z−1 /∈ �T , the operator (I − zT ) can be inverted to yield:

b∑
t=a

(zT )t = (I − zT )−1[(zT )a − (zT )b+1].

The first such summation is as follows:

N∑
tκ=tκ−1+1

[
z(α)
κ T

]tκ = [
I − z(α)

κ T
]−1{[

z(α)
κ T

]tκ−1+1 − [
z(α)
κ T

]N+1}
= [

z(α)
κ T

]tκ−1 T
[
I/z(α)

κ − T
]−1 − [

I − z(α)
κ T

]−1[
z(α)
κ T

]N+1
. (O8)

As N → ∞ the contribution from the rightmost term in Eq. (O8) vanishes. This follows from the fact that

(e−iωT )N = e−iωN T N approaches
∑

λ∈�ρ(T )

(λ/eiω )N Tλ as N → ∞.

In particular, the contribution from the decaying eigenmodes (with eigenvalue magnitude less than unity) vanishes as N → ∞.
However, for eigenvalues λ ∈ ρ(T ) on the unit circle, (λ/eiω )N does not converge for generic ω as N → ∞. Therefore, if the
polyspectrum is to be well behaved in the N → ∞ limit, the contribution from these terms also must vanish.

The surviving term, leftmost in Eq. (O8), conveniently has a T tκ−1 operator on the lefthand side that cancels with the T −tκ−1

operator in Eq. (O7). In effect, for: {
κ−1∏
k=1

[
z

(α)
k T

]tk

g

α−1 (k)
T −tk

}{
N∑

tκ=tκ−1+1

[
z(α)
κ T

]tκ

}

we substitute: {
κ−2∏
k=1

[
z

(α)
k T

]tk

g

α−1 (k)
T −tk

}[
z

(α)
κ−1:κT

]tκ−1

g

α−1 (κ−1)
T
[
I/z(α)

κ − T
]−1

,

where z(α)
�:κ ≡ ∏κ

k=� z
(α)
k = e−i

∑κ
k=� ω

α−1 (k) . The tκ−1 term can now be summed over in the same fashion as just done for the tκ term.
This summation and annihilation proceeds recursively to yield a surprisingly concise closed-form solution for any polyspectrum.
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To carry out the specified recursion, we note that each new summation is of the form:

N−κ+�∑
t�=t�−1+1

(
z

(α)
�:κ T

)t� = [
I − z

(α)
�:κ T

]−1{[
z

(α)
�:κ T

]t�−1+1 − [
z

(α)
�:κ T

]N−κ+�+1}
= [

z
(α)
�:κ T

]t�−1 T
[
I/z(α)

�:κ − T
]−1 − [

I − z
(α)
�:κ T

]−1[
z

(α)
�:κ T

]N−κ+�+1

→N→∞
[
z

(α)
�:κ T

]t�−1 T
[
I/z(α)

�:κ − T
]−1

.

This provides the desired annihilation with T −t�−1 , allowing the recursion. (Again, the contribution of the rightmost term vanishes
for generic ω in the N → ∞ limit.)

As an intermediate step in this recursive procedure, we obtain:

Sg0,...,gK (ω1, . . . , ωK ) = lim
N→∞

1

N

K∑
κ=0

∑
α∈F (κ )

K

N−κ∑
t0=1

. . .

N−κ+�∑
t�=t�−1+1

〈π |
g
α−1 (0)

T −t0

{
�∏

k=1

[
z

(α)
k T

]tk

g

α−1 (k)
T −tk

}[
z

(α)
�+1:κT

]t�

×
{

κ∏
k=�+1

T
[
I/z(α)

k:κ − T
]−1


g
α−1 (k)

}
|1〉[z(α)

0

]t0

= lim
N→∞

1

N

K∑
κ=0

∑
α∈F (κ )

K

N−κ∑
t0=1

. . .

N−κ+�∑
t�=t�−1+1

〈π |
g
α−1 (0)

T −t0

{
�−1∏
k=1

[
z

(α)
k T

]tk

g

α−1 (k)
T −tk

}[
z

(α)
�:κ T

]t�

g

α−1 (�)

×
{

κ∏
k=�+1

T
[
I/z(α)

k:κ − T
]−1


g
α−1 (k)

}
|1〉[z(α)

0

]t0

= lim
N→∞

1

N

K∑
κ=0

∑
α∈F (κ )

K

N−κ∑
t0=1

· · ·
N−κ+�−1∑

t�−1=t�−2+1

〈π |
g
α−1 (0)

T −t0

{
�−1∏
k=1

[
z

(α)
k T

]tk

g

α−1 (k)
T −tk

}[
z

(α)
�:κ T

]t�−1

×
{

κ∏
k=�

T
[
I/z(α)

k:κ − T
]−1


g
α−1 (k)

}
|1〉[z(α)

0

]t0
.

Eventually only the t0 summation remains:

Sg0,...,gK (ω1, . . . , ωK ) = lim
N→∞

1

N

K∑
κ=0

∑
α∈F (κ )

K

N−κ∑
t0=1

N−κ+1∑
t1=t0+1

〈π |
g
α−1 (0)

T −t0
{[
z

(α)
1 T

]t1

g

α−1 (1)
T −t1

}

× (
z

(α)
2:κT

)t1

{
κ∏

k=2

T
[
I/z(α)

k:κ − T
]−1


g
α−1 (k)

}
|1〉[z(α)

0

]t0

= lim
N→∞

1

N

K∑
κ=0

∑
α∈F (κ )

K

N−κ∑
t0=1

〈π |
g
α−1 (0)

T −t0
(
z

(α)
1:κT

)t0

{
κ∏

k=1

T
[
I/z(α)

k:κ − T
]−1


g
α−1 (k)

}
|1〉[z(α)

0

]t0

= lim
N→∞

1

N

K∑
κ=0

∑
α∈F (κ )

K

〈π |
g
α−1 (0)

{
κ∏

k=1

T
[
I/z(α)

k:κ − T
]−1


g
α−1 (k)

}
|1〉

N−κ∑
t0=1

(
z

(α)
0:κ

)t0
.

It is now crucial to notice that:

z
(α)
0:κ = e−i

∑κ
k=0 ω

α−1(k) = e−i
∑K

k=0 ωk = ei0 = 1,

since ω0 = −∑K
k=1 ωk . Accordingly, the summation over t0 becomes

N−κ∑
t0=1

(
z

(α)
0:κ

)t0 =
N−κ∑
t0=1

1t0 =
N−κ∑
t0=1

1 = N − κ.
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Thus, for finite K , the continuous part of the (g0, . . . , gK ) polyspectrum has the closed-form expression:

Sg0,...,gK (ω1, . . . , ωK ) =
K∑

κ=0

∑
α∈F (κ )

K

〈π |
g
α−1 (0)

{
κ∏

�=1

T
[
I/z(α)

�:κ − T
]−1


g
α−1 (�)

}
|1〉
(

lim
N→∞

N − κ

N

)
(O9)

=
K∑

κ=0

∑
α∈F (κ )

K

〈π |
g
α−1 (0)

{
κ∏

�=1

T
[
I/z(α)

�:κ − T
]−1


g
α−1 (�)

}
|1〉. (O10)

In addition to this continuous part, the polyspectrum may also have “discrete” contributions: these are hyperplanes in the
K-dimensional (ωk )K

k=1 frequency space where the magnitude of the polyspectrum diverges. From Eq. (O10), it is evident that

divergences in the polyspectrum may only appear where the constituent resolvents [I/z(α)
�:κ − T ]

−1
diverge. In turn, this would

require the scalar 1/z
(α)
�:κ = ei

∑κ
n=�

∑
m∈α−1 (n) ωm to be equal to one of the eigenvalues of the transition matrix T on the unit circle,

λ = eiωλ ∈ �ρ(T ). Mathematically, this simplifies to the condition that [
∑κ

n=�

∑
m∈α−1(n) ωm] mod 2π = ωλ mod 2π . In words,

this means that polyspectra may diverge only where subsets of the frequencies sum to an eigenfrequency ωλ. For example, it
is typical to see diagonal, vertical, and horizontal large-magnitude streaks coexisting in a generic bispectrum, corresponding to
ω1 + ω2 = ωλ, to ω1 = ωλ, and to ω2 = ωλ, respectively [155].

1. (Eigen)Spectral expansion of polyspectra

Using Eq. (9) to express the resolvent [I/z(α)
�:κ − T ]

−1
in terms of the transition-matrix eigenvalues and spectral projection

operators:

(
I/z(α)

�:κ − T
)−1 =

∑
λ∈�T

νλ−1∑
m=0

1[
1/z

(α)
�:κ − λ

]m+1 Tλ,m, (O11)

we again see that the time-evolution operator T ’s eigenspectrum directly controls the process’ polyspectrum. Furthermore, recall
that T = ∑

λ(λTλ,0 + Tλ,1) and Tλ,mTζ ,n = δλ,ζ Tλ,m+n. With this we find:

Sg0,...,gK (ω1, . . . , ωK ) =
K∑

κ=0

∑
α∈F (κ )

K

∑
λ1∈�T

νλ1 −1∑
m1=0

∑
λ2∈�T

νλ2 −1∑
m2=0

· · ·
∑

λκ∈�T

νλκ −1∑
mκ=0

〈π |
g
α−1 (0)

[∏κ
�=1 T Tλ j ,mj 
g

α−1 (�)

]|1〉∏κ
�=1

[
1/z

(α)
�:κ − λ j

]mj+1 . (O12)

For a diagonalizable transition matrix T , this reduces to:

Sg0,...,gK (ω1, . . . , ωK ) =
K∑

κ=0

∑
α∈F (κ )

K

∑
λ1∈�T

∑
λ2∈�T

· · ·
∑

λκ∈�T

〈π |
g
α−1 (0)

[∏κ
�=1 T Tλ j 
g

α−1 (�)

]|1〉∏κ
�=1

[
1/z

(α)
�:κ − λ j

] . (O13)

The relationship between the polyspectrum and the eigenspectrum of the time-evolution operator parallels the lessons already
discussed for power spectra. Peaks in the magnitude of general polyspectra likewise emanate from the eigenspectrum—these
peaks may occur wherever a subset of the frequencies sum to the angular frequency of an eigenvalue. The peak is sharper when
the eigenvalue is closer to the unit circle; the peak is more diffuse for eigenvalues with small magnitude.

2. Polyspectra examples

It is instructive to explore several special cases of the (g0, . . . , gK ) polyspectrum. To aid in this, we explicitly construct the
surjective function sets F (0)

1 , F (1)
1 , F (0)

2 , F (1)
2 , and F (2)

2 , shown in Fig. 17
First consider the (X , X ) polyspectrum, SX ,X (ω1), which is simply the power spectrum P(ω1). In this case, K = 1. So, we

consider the functions contained in F (0)
1 = 0

1
0 and F (1)

1 = 0
1

0
1 , 0

1
0
1

. For the compressive function α =
0
1

0
, we

obtain α−1(0) = {0, 1}, yielding:


g
α−1 (0)

= 
g{0,1} = 
|X |2 =
∑
s∈S

〈|X |2〉p(X |s)|s〉〈s|.

The (κ = 0) contribution to the power spectrum is thus:

〈π|
|X |2 |1〉 =
∑
s∈S

〈|X |2〉p(X |s)〈π|s〉 = 〈|x|2〉,

which is indeed the first term in Eq. (6). The (κ = 1) contribution to the power spectrum is as follows:∑
α∈F (1)

1

〈π|
g
α−1 (0)

T [eiω
α−1 (1) I − T ]−1
g

α−1 (1)
|1〉,
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FIG. 17. Five examples of F (κ )
K : Each is a set of surjective functions, relevant for constructing polyspectra. The two sets F (0)

1 and F (1)
1 are

needed to construct general (g0, g1) polyspectra S(g0,g1 )(ω1). The three sets F (0)
2 , F (1)

2 , and F (2)
2 are needed to construct general (g0, g1, g2)

polyspectra S(g0,g1,g2 )(ω1, ω2).

where it should be recalled that ω0 = −ω1. Plugging in the identity and swap functions of F (1)
1 , this becomes

〈π|
g0 T (eiω1 I − T )−1
g1|1〉 + 〈π|
g1 T (eiω0 I − T )−1
g0|1〉 = 〈π|
X T (eiω1 I − T )−1
X|1〉 + 〈π|
X T (e−iω1 I − T )−1
X|1〉
= 2Re〈π|
X T (eiω1 I − T )−1
X|1〉,

which is indeed the last term of Eq. (6).
To see the general structure of other polyspectra, it is helpful to expand the first few κ terms of the general polyspectra analytic

expression Eq. (O10). Explicitly expanding the κ terms from 0 to 2 yields:

Sg0,...,gK (ω1, . . . , ωK ) =
K∑

κ=0

∑
α∈F (κ )

K

〈π |
g
α−1 (0)

{
κ∏

�=1

T
[
I/z(α)

�:κ − T
]−1


g
α−1 (�)

}
|1〉

= 〈π |
g{0,1,...,K} |1〉 +
⎧⎨⎩ ∑

α∈F (1)
K

〈π |
g
α−1 (0)

T [eiω
α−1 (1) I − T ]−1
g

α−1 (1)
|1〉
⎫⎬⎭

+
⎧⎨⎩ ∑

α∈F (2)
K

〈π |
g
α−1 (0)

T {ei[ω
α−1 (1)+ω

α−1 (2)]I − T }−1
g
α−1 (1)

T [eiω
α−1 (2) I − T ]−1
g

α−1 (2)
|1〉
⎫⎬⎭

+
K∑

κ=3

∑
α∈F (κ )

K

〈π |
g
α−1 (0)

{
κ∏

�=1

T
[
I/z(α)

�:κ − T
]−1


g
α−1 (�)

}
|1〉. (O14)

From Eq. (O14), it is now easy to specialize to the (X − 〈X 〉, X − 〈X 〉, X − 〈X 〉) polyspectrum denoted
SX−〈X 〉,X−〈X 〉,X−〈X 〉(ω1, ω2). This is the cumulant bispectrum, Scumulant

X ,X,X
(ω1, ω2), since the third-order cumulants of the original
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time series are the same as the third-order moments of the modified time series with subtracted mean [128,133]. It is as follows:

Scumulant
X ,X,X

(ω1, ω2) = SX−〈X 〉,X−〈X 〉,X−〈X 〉(ω1, ω2)

= 〈π |
|X−〈x〉|2(X−〈x〉)|1〉 +
{ ∑

α∈F (1)
2

〈π |
g
α−1 (0)

T [eiω
α−1 (1) I − T ]−1
g

α−1 (1)
|1〉
}

+
∑

α∈F (2)
2

〈π |
g
α−1 (0)

T {ei[ω
α−1 (1)+ω

α−1 (2)]I − T }−1
g
α−1 (1)

T [eiω
α−1 (2) I − T ]−1
g

α−1 (2)
|1〉. (O15)

This leads to a fraudulent white noise theorem for the cumulant bispectrum, reminiscent of Corollary 1.
Theorem 6. Any hidden Markov chain with any arbitrary state-paired collection of equal-mean distributions, i.e.:

P ∈ {{p(X |s)}s∈S : 〈X 〉p(X |s) = 〈x〉 for all s ∈ S},
generates a flat bispectrum that is constant over all frequencies (ω1, ω2).

Proof. Equation (O15) shows that the cumulant bispectrum consists of contributions from F (0)
2 , F (1)

2 , and F (2)
2 . The only F (0)

2
contribution is 〈π |
|X−〈x〉|2(X−〈x〉)|1〉, which is a constant independent of frequency. Whereas we show that each contribution
from F (1)

2 and F (2)
2 is identically zero if the stochastic process can be generated by a HMM with equal-mean PDFs associated

with each state. For such processes, 〈X 〉p(X |s) = 〈x〉, where 〈x〉 is independent of the latent state s.

With the aid of Fig. 17, it is easy to verify that, for each α ∈ F (1)
2 , either 
g

α−1 (0)
or 
g

α−1 (1)
equals either 
X−〈x〉 or 
X−〈x〉.

These latter two operators both equal the zero operator 0 since:


X−〈x〉 =
∑
s∈S

〈X − 〈x〉〉p(X |s)|s〉〈s| =
∑
s∈S

[〈X 〉p(X |s) − 〈x〉]|s〉〈s| = 0

and


X−〈x〉 =
∑
s∈S

〈X − 〈x〉〉p(X |s)|s〉〈s| =
∑
s∈S

[〈X 〉p(X |s) − 〈x〉]|s〉〈s| = 0.

Each potential contribution from α ∈ F (1)
2 is therefore a product of zero and thus vanishes.

Again with the aid of Fig. 17, it is easy to verify that for each α ∈ F (2)
2 , the operators 
g

α−1 (0)
, 
g

α−1 (1)
, and 
g

α−1 (2)
are equal

to either 
X−〈x〉 or 
X−〈x〉 which—as we showed—are all zero. Each potential contribution from α ∈ F (2)
2 is therefore a product

of zero and so vanishes.
For such processes, this establishes that the only nonzero contribution to the cumulant bispectrum is independent of frequency.

The corresponding cumulant bispectrum is thus flat with uniform height 〈|x − 〈x〉|2(x − 〈x〉)〉.
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